257 resultados para signal theory
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
The RuskSkinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations. 2004 American Institute of Physics.
Resumo:
A new aggregation method for decision making is presented by using induced aggregation operators and the index of maximum and minimum level. Its main advantage is that it can assess complex reordering processes in the aggregation that represent complex attitudinal characters of the decision maker such as psychological or personal factors. A wide range of properties and particular cases of this new approach are studied. A further generalization by using hybrid averages and immediate weights is also presented. The key issue in this approach against the previous model is that we can use the weighted average and the ordered weighted average in the same formulation. Thus, we are able to consider the subjective attitude and the degree of optimism of the decision maker in the decision process. The paper ends with an application in a decision making problem based on the use of the assignment theory.
Resumo:
A new model for dealing with decision making under risk by considering subjective and objective information in the same formulation is here presented. The uncertain probabilistic weighted average (UPWA) is also presented. Its main advantage is that it unifies the probability and the weighted average in the same formulation and considering the degree of importance that each case has in the analysis. Moreover, it is able to deal with uncertain environments represented in the form of interval numbers. We study some of its main properties and particular cases. The applicability of the UPWA is also studied and it is seen that it is very broad because all the previous studies that use the probability or the weighted average can be revised with this new approach. Focus is placed on a multi-person decision making problem regarding the selection of strategies by using the theory of expertons.
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational, and research tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system. In this context the research developed includes the visual information as a meaningful source that allows detecting the obstacle position coordinates as well as planning the free obstacle trajectory that should be reached by the robot
Resumo:
We study the determinants of political myopia in a rational model of electoral accountability where the key elements are informational frictions and uncertainty. We build aframework where political ability is ex-ante unknown and policy choices are not perfectlyobservable. On the one hand, elections improve accountability and allow to keep well-performing incumbents. On the other, politicians invest too little in costly policies withfuture returns in an attempt to signal high ability and increase their reelection probability.Contrary to the conventional wisdom, uncertainty reduces political myopia and may, undersome conditions, increase social welfare. We use the model to study how political rewardscan be set so as to maximise social welfare and the desirability of imposing a one-term limitto governments. The predictions of our theory are consistent with a number of stylised factsand with a new empirical observation documented in this paper: aggregate uncertainty, measured by economic volatility, is associated to better fiscal discipline in a panel of 20 OECDcountries.
Resumo:
In this paper, we describe several techniques for detecting tonic pitch value in Indian classical music. In Indian music, the raga is the basic melodic framework and it is built on the tonic. Tonic detection is therefore fundamental for any melodic analysis in Indian classical music. This workexplores detection of tonic by processing the pitch histograms of Indian classic music. Processing of pitch histograms using group delay functions and its ability to amplify certain traits of Indian music in the pitch histogram, is discussed. Three different strategies to detect tonic, namely, the concert method, the template matching and segmented histogram method are proposed. The concert method exploits the fact that the tonic is constant over a piece/concert.templatematchingmethod and segmented histogrammethodsuse the properties: (i) the tonic is always present in the background, (ii) some notes are less inflected and dominant, to detect the tonic of individual pieces. All the three methods yield good results for Carnatic music (90−100% accuracy), while for Hindustanimusic, the templatemethod works best, provided the v¯adi samv¯adi notes for a given piece are known (85%).
Resumo:
Planning with partial observability can be formulated as a non-deterministic search problem in belief space. The problem is harder than classical planning as keeping track of beliefs is harder than keeping track of states, and searching for action policies is harder than searching for action sequences. In this work, we develop a framework for partial observability that avoids these limitations and leads to a planner that scales up to larger problems. For this, the class of problems is restricted to those in which 1) the non-unary clauses representing the uncertainty about the initial situation are nvariant, and 2) variables that are hidden in the initial situation do not appear in the body of conditional effects, which are all assumed to be deterministic. We show that such problems can be translated in linear time into equivalent fully observable non-deterministic planning problems, and that an slight extension of this translation renders the problem solvable by means of classical planners. The whole approach is sound and complete provided that in addition, the state-space is connected. Experiments are also reported.
Resumo:
When dealing with nonlinear blind processing algorithms (deconvolution or post-nonlinear source separation), complex mathematical estimations must be done giving as a result very slow algorithms. This is the case, for example, in speech processing, spike signals deconvolution or microarray data analysis. In this paper, we propose a simple method to reduce computational time for the inversion of Wiener systems or the separation of post-nonlinear mixtures, by using a linear approximation in a minimum mutual information algorithm. Simulation results demonstrate that linear spline interpolation is fast and accurate, obtaining very good results (similar to those obtained without approximation) while computational time is dramatically decreased. On the other hand, cubic spline interpolation also obtains similar good results, but due to its intrinsic complexity, the global algorithm is much more slow and hence not useful for our purpose.
Resumo:
Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%.
Resumo:
We report on the onset of fluid entrainment when a contact line is forced to advance over a dry solid of arbitrary wettability. We show that entrainment occurs at a critical advancing speed beyond which the balance between capillary, viscous, and contact-line forces sustaining the shape of the interface is no longer satisfied. Wetting couples to the hydrodynamics by setting both the morphology of the interface at small scales and the viscous friction of the front. We find that the critical deformation that the interface can sustain is controlled by the friction at the contact line and the viscosity contrast between the displacing and displaced fluids, leading to a rich variety of wetting-entrainment regimes. We discuss the potential use of our theory to measure contact-line forces using atomic force microscopy and to study entrainment under microfluidic conditions exploiting colloid-polymer fluids of ultralow surface tension.
Resumo:
The relation between the low-energy constants appearing in the effective field theory description of the Lambda N -> NN transition potential and the parameters of the one-meson-exchange model previously developed is obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture by means of a comparison to the corresponding operational structures appearing in the effective approach. The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange is also discussed.
Resumo:
The relation between the low-energy constants appearing in the effective field theory description of the Lambda N -> NN transition potential and the parameters of the one-meson-exchange model previously developed is obtained. We extract the relative importance of the different exchange mechanisms included in the meson picture by means of a comparison to the corresponding operational structures appearing in the effective approach. The ability of this procedure to obtain the weak baryon-baryon-meson couplings for a possible scalar exchange is also discussed.
Resumo:
This paper develops an approach to rank testing that nests all existing rank tests andsimplifies their asymptotics. The approach is based on the fact that implicit in every ranktest there are estimators of the null spaces of the matrix in question. The approach yieldsmany new insights about the behavior of rank testing statistics under the null as well as localand global alternatives in both the standard and the cointegration setting. The approach alsosuggests many new rank tests based on alternative estimates of the null spaces as well as thenew fixed-b theory. A brief Monte Carlo study illustrates the results.
Resumo:
By means of computer simulations and solution of the equations of the mode coupling theory (MCT),we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled polymers. The investigated dynamic range extends from the caging regime characteristic of glass-formers to the relaxation of the chain Rouse modes. We review our recent work on this question,provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers. However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by increasing barrier strength. It is not connected either with the breakdown of the convolution approximation for three-point static correlations, which retains its validity for stiff chains. These findings suggest the need of an improvement of the MCT equations for polymer melts. Concerning the relaxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from chain reorientation down to the caging regime. It rationalizes, from first principles, the observed deviations from the Rouse model on increasing the barrier strength. These include anomalous scaling of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode correlators.