236 resultados para Stochastic dynamics
Resumo:
We present a study of the evaporation dynamics of a substance undergoing a coarsening process. The system is modeled by the Cahn-Hilliard equation with absorbing boundaries. We have found that the dynamics, although of a diffusive nature, is much slower than the usual one without coarsening. Analytical and simulation results are in reasonable agreement.
Resumo:
We show that external fluctuations induce excitable behavior in a bistable spatially extended system with activator-inhibitor dynamics of the FitzHugh-Nagumo type. This can be understood as a mechanism for sustained signal propagation in bistable media. The phase diagram of the stochastic system is analytically obtained and numerically verified. For small-noise intensities, front propagation becomes unstable, and excitable pulses arise as the only possible spatiotemporal behavior of the system. For large-noise intensities, on the other hand, the system enters an effective regime of oscillatory behavior, where it exhibits spontaneous nucleation of pulses and synchronized firing.
Resumo:
A calculation of passage-time statistics is reported for the laser switch-on problem, under the influence of colored noise, when the net gain is continuously swept from below to above threshold. Cases of fast and slow sweeping are considered. In the weak-noise limit, asymptotic results are given for small and large correlation times of the noise. The mean first passage time increases with the correlation time of the noise. This effect is more important for fast sweeping than for slow sweeping.
Resumo:
We present a theoretical study of the recently observed dynamical regimes of paramagnetic colloidal particles externally driven above a regular lattice of magnetic bubbles [P. Tierno, T. H. Johansen, and T. M. Fischer, Phys. Rev. Lett. 99, 038303 (2007)]. An external precessing magnetic field alters the potential generated by the surface of the film in such a way to either drive the particle circularly around one bubble, ballistically through the array, or in triangular orbits on the interstitial regions between the bubbles. In the ballistic regime, we observe different trajectories performed by the particles phase locked with the external driving. Superdiffusive motion, which was experimentally found bridging the localized and delocalized dynamics, emerge only by introducing a certain degree of randomness into the bubbles size distribution.
Resumo:
Aquest treball fa una revisió de mesures experimentals i càlculs teòrics sobre la dinàmica de col·lisions i reaccions moleculars. Els experiments se centren en col·lisions, a energies intermèdies, que involucren sistemes del tipus ió-àtom i iómolècula, per les quals es mesuren seccions eficaces totals, estat a estat, així com aquelles que discerneixen les diferents contribucions del moment angular d'espín. Els resultats obtinguts s'interpreten satisfactòriament en termes d'acoblaments no adiabàtics entre els diferents estats electrònics dels sistemes col·lisionants. Els càlculs teòrics utilitzen la metodologia quasiclàssica, així com metodologies mecanoquàntiques recentment desenvolupades, tant aproximades com exactes. S'han obtingut resultats totalment convergits per sistemes tipus, mentre que s'han analitzat, de manera detallada i extensiva, les característiques dinàmiques de sistemes triatòmic, tetraatòmic i pentaatòmic.
Resumo:
We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian turbulent flows by using a linear Langevin equation, where the noise term acts as a stochastic stirring force. The characteristic parameters of the velocity field are well introduced, in particular the kinematic viscosity and the spectrum of energy. As an application, the diffusion of a passive scalar is studied for two different energy spectra. Numerical results are compared favorably with analytical calculations.
Resumo:
A study of a stable front propagating in a turbulent medium is presented. The front is generated through a reaction-diffusion equation, and the turbulent medium is statistically modeled using a Langevin equation. Numerical simulations indicate the presence of two different dynamical regimes. These regimes appear when the turbulent flow either wrinkles a still rather sharp propagating interfase or broadens it. Specific dependences of the propagating velocities on stirring intensities appropriate to each case are found and fitted when possible according to theoretically predicted laws. Different turbulent spectra are considered.
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
The magnetically induced splay Fréedericksz transition is reexamined to look for pattern forming phenomena slightly above or below criticality. By using our traditional scheme of stochastic nematodynamic equations, situations are, respectively, found of transient and permanent predominance of transversal periodicities (wave numbers) along the direction perpendicular to the initial orientation within the sample. The relevance of these predictions in relation with recent observations in the electrically driven splay Fréedericksz transition, and in general with other pattern forming phenomena, is stressed.
Resumo:
We analyze the dynamics of a transient pattern formation in the Fréedericksz transition corresponding to a twist geometry. We present a calculation of the time-dependent structure factor based on a dynamical model which incorporates consistently the coupling of the director field with the velocity flow and also the effect of fluctuations. The appearance and development of a characteristic periodicity is described in terms of the time dependence of the maximum of the structure factor. We find a well-defined time for the appearance of the pattern and a subsequent stage of pattern development in which the characteristic periodicity tends to an asymptotic value.
Resumo:
A nonlinear calculation of the dynamics of transient pattern formation in the Fréedericksz transition is presented. A Gaussian decoupling is used to calculate the time dependence of the structure factor. The calculation confirms the range of validity of linear calculations argued in earlier work. In addition, it describes the decay of the transient pattern.
Resumo:
We study the problem of the Fréedericksz transition under a rotating magnetic field by using a dynamical model which incorporates thermal fluctuations into the whole set of nematodynamic equations. In contrast to other geometries, nonuniform textures in the plane of the sample do not appear favored. The proper consideration of thermal noise enables us to describe the dynamics of orientational fluctuations both below and above the shifted instability.
Resumo:
We discuss the dynamics of the transient pattern formation process corresponding to the splay Fréedericksz transition. The emergence and subsequent evolution of the spatial periodicity is here described in terms of the temporal dependence of the wave numbers corresponding to the maxima of the structure factor. Situations of perpendicular as well as oblique field-induced stripes relative to the initial orientation of the director are both examined with explicit indications of the time scales needed for their appearance and posterior development.
Resumo:
We study the dynamics of the late stages of the Fréedericksz transition in which a periodic transient pattern decays to a final homogeneous state. A stability analysis of an unstable stationary pattern is presented, and equations for the evolution of the domain walls are obtained. Using results of previous theories, we analyze the effect that the specific dynamics of the problem, incorporating hydrodynamic couplings, has on the expected logarithmic domain growth law.