517 resultados para Almela i Vives, Francesc, 1903-1967-Biografies
Resumo:
Chemisorption of group-III metal adatoms on Si(111) and Ge(111) has been studied through the ab initio Hartree-Fock method including nonempirical pseudopotentials and using cluster models to simulate the surface. Three different high-symmetry sites (atop, eclipsed, and open) have been considered by using X4H9, X4H7, and X6H9 (X=Si,Ge) cluster models. In a first step, ideal surface geometries have been used. Metal-induced reconstruction upon chemisorption has also been taken into account. Equilibrium distances, binding energies, and vibrational frequencies have been obtained and compared with available experimental data. From binding-energy considerations, the atop and eclipsed sites seem to be the most favorable ones and thus a coadsorption picture may be suggested. Group-III metals exhibit a similar behavior and the same is true for Si(111) and Ge(111) surfaces when chemisorption is considered.
Resumo:
The O 1s x-ray photoelectron spectroscopy spectrum for Al(111)/O at 300 K shows two components whose behavior as a function of time and variation of detection angle are consistent with either (a) a surface species represented by the higher binding-energy (BE) component and a subsurface species represented by the lower BE component, or (b) small close-packed oxygen islands with the interior atoms represented by the lower BE component and the perimeter atoms by the higher BE component. We have modeled both situations using ab initio Hartree-Fock wave functions for clusters of Al and O atoms. For an O atom in a threefold site, it was found that a below-surface position gave a higher O 1s BE than an above-surface position, incompatible with interpretation (a). This change in the O 1s BE could arise because the bond for O to Al may have a more covalent character when the O is below the surface than when it is above the surface. We present evidence consistent with this view. An O adatom island with all the O atoms in threefold sites gives calculated O 1s BE's which are significantly higher for the perimeter O atoms. Further, the results for an isolated O island without the Al substrate present also give higher BE¿s for the perimeter atoms. Both these results are consistent with interpretation (b). Published scanning-tunneling-microscopy data supports the suggestion that the chemisorbed state consists of small, close-packed islands, whereas the presence of two vibrational modes in high-resolution electron-energy-loss spectroscopy data has been interpreted as representing surface and subsurface oxygen atoms. In light of the present results, we suggest that a vibrational interpretation in terms of interior and perimeter adatoms should be considered.
Resumo:
By means of the ab initio cluster-model approach, we present theoretical evidence for two different mechanisms of bonding of atomic Al to Si(111). On the atop site (T1) the interaction of atomic Al to Si(111) is characteristic of an ionic bond whereas interaction above the threefold eclipsed site (T4) leads to the formation of a typical covalent bond. Moreover, both sites have a similar interaction energy if electronic correlation effects are included. While the conclusions regarding the nature of the chemisorption bond in the two sites do not depend either on the cluster-model size, the kind of embedding hydrogen atoms used, or the quality of the wave function (Hartree-Fock or configuration interaction), the chemisorption energy depends strongly on the wave function used. In fact, inclusion of correlation energy is necessary to properly describe the interaction energies.
Resumo:
A linear M-O-M (M=metal, O=oxygen) cluster embedded in a Madelung field, and also including the quantum effects of the neighboring ions, is used to represent the alkaline-earth oxides. For this model an ab initio wave function is constructed as a linear combination of Slater determinants written in an atomic orbital basis set, i.e., a valence-bond wave function. Each valence-bond determinant (or group of determinants) corresponds to a resonating valence-bond structure. We have obtained ab initio valence-bond cluster-model wave functions for the electronic ground state and the excited states involved in the optical-gap transitions. Numerical results are reasonably close to the experimental values. Moreover, the model contains the ionic model as a limiting case and can be readily extended and improved.
Resumo:
A nonlinear calculation of the dynamics of transient pattern formation in the Fréedericksz transition is presented. A Gaussian decoupling is used to calculate the time dependence of the structure factor. The calculation confirms the range of validity of linear calculations argued in earlier work. In addition, it describes the decay of the transient pattern.
Resumo:
We present an analysis of the M-O chemical bonding in the binary oxides MgO, CaO, SrO, BaO, and Al2O3 based on ab initio wave functions. The model used to represent the local environment of a metal cation in the bulk oxide is an MO6 cluster which also includes the effect of the lattice Madelung potential. The analysis of the wave functions for these clusters leads to the conclusion that all the alkaline-earth oxides must be regarded as highly ionic oxides; however, the ionic character of the oxides decreases as one goes from MgO, almost perfectly ionic, to BaO. In Al2O3 the ionic character is further reduced; however, even in this case, the departure from the ideal, fully ionic, model of Al3+ is not exceptionally large. These conclusions are based on three measures, a decomposition of the Mq+-Oq- interaction energy, the number of electrons associated to the oxygen ions as obtained from a projection operator technique, and the analysis of the cation core-level binding energies. The increasing covalent character along the series MgO, CaO, SrO, and BaO is discussed in view of the existing theoretical models and experimental data.
Resumo:
Finite cluster models and a variety of ab initio wave functions have been used to study the electronic structure of bulk KNiF3. Several electronic states, including the ground state and some charge-transfer excited states, have been considered. The study of the cluster-model wave functions has permitted an understanding of the nature of the chemical bond in the electronic ground state. This is found to be highly ionic and the different ionic and covalent contributions to the bonding have been identified and quantified. Finally, we have studied the charge-transfer excited states leading to the optical gap and have found that calculated and experimental values are in good agreement. The wave functions corresponding to these excited states have also been analyzed and show that although KNiF3 may be described as a ligand-to-metal charge-transfer insulator there is a strong configuration mixing with the metal-to-metal charge-transfer states.
Resumo:
The performance of density-functional theory to solve the exact, nonrelativistic, many-electron problem for magnetic systems has been explored in a new implementation imposing space and spin symmetry constraints, as in ab initio wave function theory. Calculations on selected systems representative of organic diradicals, molecular magnets and antiferromagnetic solids carried out with and without these constraints lead to contradictory results, which provide numerical illustration on this usually obviated problem. It is concluded that the present exchange-correlation functionals provide reasonable numerical results although for the wrong physical reasons, thus evidencing the need for continued search for more accurate expressions.
Resumo:
The performance of different correlation functionals has been tested for alkali metals, Li to Cs, interacting with cluster models simulating different active sites of the Si(111) surface. In all cases, the ab initio Hartree-Fock density has been obtained and used as a starting point. The electronic correlation energy is then introduced as an a posteriori correction to the Hartree-Fock energy using different correlation functionals. By making use of the ionic nature of the interaction and of different dissociation limits we have been able to prove that all functionals tested introduce the right correlation energy, although to a different extent. Hence, correlation functionals appear as an effective and easy way to introduce electronic correlation in the ab initio Hartree-Fock description of the chemisorption bond in complex systems where conventional configuration interaction techniques cannot be used. However, the calculated energies may differ by some tens of eV. Therefore, these methods can be employed to get a qualitative idea of how important correlation effects are, but they have some limitations if accurate binding energies are to be obtained.
Resumo:
The origin of magnetic coupling in KNiF3 and K2 NiF4 is studied by means of an ab initio cluster model approach. By a detailed study of the mapping between eigenstates of the exact nonrelativistic and spin model Hamiltonians it is possible to obtain the magnetic coupling constant J and to compare ab initio cluster-model values with those resulting from ab initio periodic Hartree-Fock calculations. This comparison shows that J is strongly determined by two-body interactions; this is a surprising and unexpected result. The importance of the ligands surrounding the basic metal-ligand-metal interacting unit is reexamined by using two different partitions and the constrained space orbital variation method of analysis. This decomposition enables us to show that this effect is basically environmental. Finally, dynamical electronic correlation effects have found to be critical in determining the final value of the magnetic coupling constant.
Resumo:
We study the Fréedericksz transition in a twist geometry under the effect of a periodic modulation of the magnitude of the applied magnetic field. We find a shift of the effective instability point and a time-periodic state with anomalously large orientational fluctuations. This time-periodic state occurs below threshold and it is accompanied by a dynamically stabilized spatial pattern. Beyond the instability the emergence of a transient pattern can be significantly delayed by a fast modulation, allowing the observation of pattern selection by slowing down the reorientational dynamics.
Resumo:
Existence of collective effects in magnetic coupling in ionic solids is studied by mapping spin eigenstates of the Heisenberg and exact nonrelativistic Hamiltonians on cluster models representing KNiF3, K2NiF4, NiO, and La2CuO4. Ab initio techniques are used to estimate the Heisenberg constant J. For clusters with two magnetic centers, the values obtained are about the same for models having more magnetic centers. The absence of collective effects in J strongly suggests that magnetic interactions in this kind of ionic solids are genuinely local and entangle only the two magnetic centers involved.