233 resultados para statistical quantum field theory
Resumo:
A pseudoclassical model for a relativistic spinning particle is studied. The only physically meaningful world line is the one without Zitterbewegung. The Poincar realization for this situation is constructed.
Resumo:
We illustrate how to apply modern effective field-theory techniques and dimensional regularization to factorize the various scales, which appear in QED bound states at finite temperature. We focus here on the muonic hydrogen atom. Vacuum polarization effects make the physics of this atom at finite temperature very close to that of heavy quarkonium states. We comment on the implications of our results for these states in the quark gluon plasma. In particular, we estimate the effects of a finite-charm quark mass in the dissociation temperature of bottomonium.
Resumo:
A dual-Regge model with a nonlinear proton Regge trajectory in the missing mass (MX2) channel, describing the experimental data on low-mass single diffraction dissociation (SDD), is constructed. Predictions for the LHC energies are given.
Resumo:
We study charmed baryon resonances that are generated dynamically within a unitary meson-baryon coupled-channel model that treats the heavy pseudoscalar and vector mesons on equal footing as required by heavy-quark symmetry. It is an extension of recent SU(4) models with t-channel vector-meson exchanges to an SU(8) spin-flavor scheme, but differs considerably from the SU(4) approach in how the strong breaking of the flavor symmetry is implemented. Some of our dynamically generated states can be readily assigned to recently observed baryon resonances, while others do not have a straightforward identification and require the compilation of more data as well as an extension of the model to d-wave meson-baryon interactions and p-wave coupling in the neglected s- and u-channel diagrams. Of several novelties, we find that the Delta c(2595), which emerged as a ND quasibound state within the SU(4) approaches, becomes predominantly a ND* quasibound state in the present SU(8) scheme.
Resumo:
Through an imaginary change of coordinates, the ordinary Poincar algebra is shown to be a subalgebra of the Galilei one in four space dimensions. Through a subsequent contraction the remaining Lie generators are eliminated in a natural way. An application of these results to connect Galilean and relativistic field equations is discussed.
Resumo:
We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.
Resumo:
The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.
Resumo:
A presymplectic structure for path-dependent Lagrangian systems is set up such that, when applied to ordinary Lagrangians, it yields the familiar Legendre transformation. It is then applied to derive a Hamiltonian formalism and the conserved quantities for those predictive invariant systems whose solutions also satisfy a Fokker-type action principle.
Resumo:
Nucleation rates for tunneling processes in Minkowski and de Sitter space are investigated, taking into account one loop prefactors. In particular, we consider the creation of membranes by an antisymmetric tensor field, analogous to Schwinger pair production. This can be viewed as a model for the decay of a false (or true) vacuum at zero temperature in the thin wall limit. Also considered is the spontaneous nucleation of strings, domain walls, and monopoles during inflation. The instantons for these processes are spherical world sheets or world lines embedded in flat or de Sitter backgrounds. We find the contribution of such instantons to the semiclassical partition function, including the one loop corrections due to small fluctuations around the spherical world sheet. We suggest a prescription for obtaining, from the partition function, the distribution of objects nucleated during inflation. This can be seen as an extension of the usual formula, valid in flat space, according to which the nucleation rate is twice the imaginary part of the free energy. For the case of pair production, the results reproduce those that can be obtained using second quantization methods, confirming the validity of instanton techniques in de Sitter space. Throughout the paper, both the gravitational field and the antisymmetric tensor field are assumed external.
Resumo:
In the simplest model of open inflation there are two inflaton fields decoupled from each other. One of them, the tunneling field, produces a first stage of inflation which prepares the ground for the nucleation of a highly symmetric bubble. The other, a free field, drives a second period of slow-roll inflation inside the bubble. However, the second field also evolves during the first stage of inflation, which to some extent breaks the needed symmetry. We show that this generates large supercurvature anisotropies which, together with the results of Tanaka and Sasaki, rule out this class of simple models (unless, of course, Omega0 is sufficiently close to 1). The problem does not arise in modified models where the second field does not evolve in the first stage of inflation.