247 resultados para [JEL:C70] Mathematical and Quantitative Methods - Game Theory and Bargaining Theory - General
Resumo:
Utilizing the well-known Ultimatum Game, this note presents the following phenomenon. If we start with simple stimulus-response agents, learning through naive reinforcement, and then grant them some introspective capabilities, we get outcomes that are not closer but farther away from the fully introspective game-theoretic approach. The cause of this is the following: there is an asymmetry in the information that agents can deduce from their experience, and this leads to a bias in their learning process.
Resumo:
Modern methods of compositional data analysis are not well known in biomedical research.Moreover, there appear to be few mathematical and statistical researchersworking on compositional biomedical problems. Like the earth and environmental sciences,biomedicine has many problems in which the relevant scienti c information isencoded in the relative abundance of key species or categories. I introduce three problemsin cancer research in which analysis of compositions plays an important role. Theproblems involve 1) the classi cation of serum proteomic pro les for early detection oflung cancer, 2) inference of the relative amounts of di erent tissue types in a diagnostictumor biopsy, and 3) the subcellular localization of the BRCA1 protein, and it'srole in breast cancer patient prognosis. For each of these problems I outline a partialsolution. However, none of these problems is \solved". I attempt to identify areas inwhich additional statistical development is needed with the hope of encouraging morecompositional data analysts to become involved in biomedical research
Resumo:
In this paper we view bargaining and cooperation as an interaction superimposed on a strategic form game. A multistage bargaining procedure for N players, the proposer commitment procedure, is presented. It is inspired by Nash s two-player variable-threat model; a key feature is the commitment to threats. We establish links to classical cooperative game theory solutions, such as the Shapley value in the transferable utility case. However, we show that even in standard pure exchange economies the traditional coalitional function may not be adequate when utilities are not transferable.
Resumo:
The achievable region approach seeks solutions to stochastic optimisation problems by: (i) characterising the space of all possible performances(the achievable region) of the system of interest, and (ii) optimisingthe overall system-wide performance objective over this space. This isradically different from conventional formulations based on dynamicprogramming. The approach is explained with reference to a simpletwo-class queueing system. Powerful new methodologies due to the authorsand co-workers are deployed to analyse a general multiclass queueingsystem with parallel servers and then to develop an approach to optimalload distribution across a network of interconnected stations. Finally,the approach is used for the first time to analyse a class of intensitycontrol problems.
Resumo:
Re-licensing requirements for professionals that move across borders arewidespread. In this paper, we measure the returns to an occupationallicense using novel data on Soviet trained physicians that immigrated toIsrael. An immigrant re-training assignment rule used by the IsraelMinistry of Health provides an exogenous source of variation inre-licensing outcomes. Instrumental variables and quantile treatmenteffects estimates of the returns to an occupational license indicate excesswages due to occupational entry restrictions and negative selectioninto licensing status. We develop a model of optimal license acquisitionwhich suggests that the wages of high-skilled immigrant physicians in thenonphysician sector outweigh the lower direct costs that these immigrantsface in acquiring a medical license. Licensing thus leads to lower averagequality of service. However, the positive earnings effect of entry restrictionsfar outweighs the lower practitioner quality earnings effect that licensinginduces.
Resumo:
It is common in econometric applications that several hypothesis tests arecarried out at the same time. The problem then becomes how to decide whichhypotheses to reject, accounting for the multitude of tests. In this paper,we suggest a stepwise multiple testing procedure which asymptoticallycontrols the familywise error rate at a desired level. Compared to relatedsingle-step methods, our procedure is more powerful in the sense that itoften will reject more false hypotheses. In addition, we advocate the useof studentization when it is feasible. Unlike some stepwise methods, ourmethod implicitly captures the joint dependence structure of the teststatistics, which results in increased ability to detect alternativehypotheses. We prove our method asymptotically controls the familywise errorrate under minimal assumptions. We present our methodology in the context ofcomparing several strategies to a common benchmark and deciding whichstrategies actually beat the benchmark. However, our ideas can easily beextended and/or modied to other contexts, such as making inference for theindividual regression coecients in a multiple regression framework. Somesimulation studies show the improvements of our methods over previous proposals. We also provide an application to a set of real data.
Resumo:
In this paper we propose a subsampling estimator for the distribution ofstatistics diverging at either known rates when the underlying timeseries in strictly stationary abd strong mixing. Based on our results weprovide a detailed discussion how to estimate extreme order statisticswith dependent data and present two applications to assessing financialmarket risk. Our method performs well in estimating Value at Risk andprovides a superior alternative to Hill's estimator in operationalizingSafety First portofolio selection.
Resumo:
We introduce a variation of the proof for weak approximations that issuitable for studying the densities of stochastic processes which areevaluations of the flow generated by a stochastic differential equation on a random variable that maybe anticipating. Our main assumption is that the process and the initial random variable have to be smooth in the Malliavin sense. Furthermore if the inverse of the Malliavin covariance matrix associated with the process under consideration is sufficiently integrable then approximations fordensities and distributions can also be achieved. We apply theseideas to the case of stochastic differential equations with boundaryconditions and the composition of two diffusions.
Resumo:
The educational system in Spain is undergoing a reorganization. At present, high-school graduates who want to enroll at a public university must take a set of examinations Pruebas de Aptitud para el Acceso a la Universidad (PAAU). A "new formula" (components, weights, type of exam,...) for university admission is been discussed. The present paper summarizes part of the research done by the author in her PhD. The context for this thesis is the evaluation of large-scale and complex systems of assessment. The main objectives were: to achieve a deep knowledge of the entire university admissions process in Spain, to discover the main sources of uncertainty and topromote empirical research in a continual improvement of the entire process. Focusing in the suitable statistical models and strategies which allow to high-light the imperfections of the system and reduce them, the paper develops, among other approaches, some applications of multilevel modeling.
Resumo:
The use of simple and multiple correspondence analysis is well-established in socialscience research for understanding relationships between two or more categorical variables.By contrast, canonical correspondence analysis, which is a correspondence analysis with linearrestrictions on the solution, has become one of the most popular multivariate techniques inecological research. Multivariate ecological data typically consist of frequencies of observedspecies across a set of sampling locations, as well as a set of observed environmental variablesat the same locations. In this context the principal dimensions of the biological variables aresought in a space that is constrained to be related to the environmental variables. Thisrestricted form of correspondence analysis has many uses in social science research as well,as is demonstrated in this paper. We first illustrate the result that canonical correspondenceanalysis of an indicator matrix, restricted to be related an external categorical variable, reducesto a simple correspondence analysis of a set of concatenated (or stacked ) tables. Then weshow how canonical correspondence analysis can be used to focus on, or partial out, aparticular set of response categories in sample survey data. For example, the method can beused to partial out the influence of missing responses, which usually dominate the results of amultiple correspondence analysis.
Resumo:
In this work we study older workers (50 64) labor force transitions after a health/disability shock. We find that the probability of keeping working decreases with both age and severity of the shock. Moreover, we find strong interactions between age and severity in the 50 64 age range and none in the 30 49 age range. Regarding demographics we find that being female and married reduce the probability of keeping work. On the contrary, being main breadwinner, education and skill levels increase it. Interestingly, the effect of some demographics changes its sign when we look at transitions from inactivity to work. This is the case of being married or having a working spouse. Undoubtedly, leisure complementarities should play a role in the latter case. Since the data we use contains a very detailed information on disabilities, we are able to evaluate the marginal effect of each type of disability either in the probability of keeping working or in returning back to work. Some of these results may have strong policy implications.
Resumo:
Condence intervals in econometric time series regressions suffer fromnotorious coverage problems. This is especially true when the dependencein the data is noticeable and sample sizes are small to moderate, as isoften the case in empirical studies. This paper suggests using thestudentized block bootstrap and discusses practical issues, such as thechoice of the block size. A particular data-dependent method is proposedto automate the method. As a side note, it is pointed out that symmetricconfidence intervals are preferred over equal-tailed ones, since theyexhibit improved coverage accuracy. The improvements in small sampleperformance are supported by a simulation study.
Resumo:
We introduce simple nonparametric density estimators that generalize theclassical histogram and frequency polygon. The new estimators are expressed as linear combination of density functions that are piecewisepolynomials, where the coefficients are optimally chosen in order to minimize the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators, and study theirperformance in a simulation study.
Resumo:
I study the impact of a universal child benefit on fertility and family well-being. I exploitthe unanticipated introduction of a new, sizeable, unconditional child benefit in Spain in2007, granted to all mothers giving birth on or after July 1, 2007. The regressiondiscontinuity-type design allows for a credible identification of the causal effects. I find thatthe benefit did lead to a significant increase in fertility, as intended, part of it coming froman immediate reduction in abortions. On the unintended side, I find that families whoreceived the benefit did not increase their overall expenditure or their consumption ofdirectly child-related goods and services. Instead, eligible mothers stayed out of the laborforce significantly longer after giving birth, which in turn led to their children spending lesstime in formal child care and more time with their mother during their first year of life. Ialso find that couples who received the benefit were less likely to break up the year afterhaving the child, although this effect was only short-term. Taken together, the resultssuggest that child benefits of this kind may successfully increase fertility, as well asaffecting family well-being through their impact on maternal time at home and familystability.
Resumo:
Hierarchical clustering is a popular method for finding structure in multivariate data,resulting in a binary tree constructed on the particular objects of the study, usually samplingunits. The user faces the decision where to cut the binary tree in order to determine the numberof clusters to interpret and there are various ad hoc rules for arriving at a decision. A simplepermutation test is presented that diagnoses whether non-random levels of clustering are presentin the set of objects and, if so, indicates the specific level at which the tree can be cut. The test isvalidated against random matrices to verify the type I error probability and a power study isperformed on data sets with known clusteredness to study the type II error.