171 resultados para Fractional Diffusion Equation
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
A diffusion-limited-aggregation (DLA) model with two components (A and B species) is presented to investigate the structure of the composite deposits. The sticking probability PAB (=PBA) between the different species is introduced into the original DLA model. By using computer simulation it is shown that various patterns are produced with varying the sticking probabilities PAB (=PBA) and PAA (= PBB), where PAA (=PBB) is the sticking probability between the same species. Segregated patterns can be analyzed under the condition PAB < PAA, assumed throughout the paper. With decreasing sticking probability PAB, a clustering of the same species occurs. With sufficiently small values of both sticking probabilities PAB and PAA, the deposit becomes dense and the segregated patterns of the composite deposit show a striped structure. The effect of the concentration on the pattern morphology is also shown.
Resumo:
[cat] Analitzem una economia amb dues característiques principals: la mobilitat dels treballadors implica transferència de coneixement i la productivitat de l’empresa augmenta amb l’intercanvi de coneixement. Cada empresa desenvolupa un tipus de coneixement que serà trasmès a la resta de la indústria mitjançant la mobilitat de treballadors. Estudiem dues estructures de mercat laboral i utilitzant un anàlisi comparatiu derivem les implicacions del model. Els resultats revelen com la mobilitat de treballadors depèn en la varietat i nivell del coneixement, la presència de costos de mobilitat, les institucions, la capacitat d’absorvir coneixement per part de les empreses i la mida de la indústria. Els resultats no depenen de l’estructura del mercat laboral.
Resumo:
We consider the asymptotic behaviour of the realized power variation of processes of the form ¿t0usdBHs, where BH is a fractional Brownian motion with Hurst parameter H E(0,1), and u is a process with finite q-variation, q<1/(1¿H). We establish the stable convergence of the corresponding fluctuations. These results provide new statistical tools to study and detect the long-memory effect and the Hurst parameter.
Resumo:
In this note we prove an existence and uniqueness result for the solution of multidimensional stochastic delay differential equations with normal reflection. The equations are driven by a fractional Brownian motion with Hurst parameter H > 1/2. The stochastic integral with respect to the fractional Brownian motion is a pathwise Riemann¿Stieltjes integral.
Resumo:
We prove a characterization of the support of the law of the solution for a stochastic wave equation with two-dimensional space variable, driven by a noise white in time and correlated in space. The result is a consequence of an approximation theorem, in the convergence of probability, for equations obtained by smoothing the random noise. For some particular classes of coefficients, approximation in the Lp-norm for p¿1 is also proved.
Resumo:
Bardina and Jolis [Stochastic process. Appl. 69 (1997) 83-109] prove an extension of Ito's formula for F(Xt, t), where F(x, t) has a locally square-integrable derivative in x that satisfies a mild continuity condition in t and X is a one-dimensional diffusion process such that the law of Xt has a density satisfying certain properties. This formula was expressed using quadratic covariation. Following the ideas of Eisenbaum [Potential Anal. 13 (2000) 303-328] concerning Brownian motion, we show that one can re-express this formula using integration over space and time with respect to local times in place of quadratic covariation. We also show that when the function F has a locally integrable derivative in t, we can avoid the mild continuity condition in t for the derivative of F in x.
Resumo:
In this work, the calcium-induced aggregation of phosphatidylserine liposomes is probed by means of the analysis of the kinetics of such process as well as the aggregate morphology. This novel characterization of liposome aggregation involves the use of static and dynamic light-scattering techniques to obtain kinetic exponents and fractal dimensions. For salt concentrations larger than 5 mM, a diffusion-limited aggregation regime is observed and the Brownian kernel properly describes the time evolution of the diffusion coefficient. For slow kinetics, a slightly modified multiple contact kernel is required. In any case, a time evolution model based on the numerical resolution of Smoluchowski's equation is proposed in order to establish a theoretical description for the aggregating system. Such a model provides an alternative procedure to determine the dimerization constant, which might supply valuable information about interaction mechanisms between phospholipid vesicles.
Resumo:
We study hydrogen stability and its evolution during thermal annealing in nanostructured amorphous silicon thin films. From the simultaneous measurement of heat and hydrogen desorption, we obtain the experimental evidence of molecular diffusion in these materials. In addition, we introduce a simple diffusion model which shows good agreement with the experimental data
Resumo:
An effect of drift is investigated on the segregation pattern in diffusion-limited aggregation (DLA) with two components (A and B species). The sticking probability PAB (=PBA) between the different species is introduced into the DLA model with drift, where the sticking probability PAA (=PBB) between the same species equals 1. By using computer simulation it is found that the drift has an important effect on not only the morphology but also the segregation pattern. Under the drift and the small sticking probability, a characteristic pattern appears where elongated clusters of A species and of B species are periodically dispersed. The period decreases with increasing drift. The periodic structure of the deposits is characterized by an autocorrelation function. The shape of the cluster consisting of only A species (or B species) shows a vertically elongated filamentlike structure. Each cluster becomes vertically longer with decreasing sticking probability PAB. The segregation pattern is distinctly different from that with no drift and a small sticking probability PAA. The effect of the concentration on the segregation pattern is also shown.
Resumo:
We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the particles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet under the influence of a temperature gradient are analyzed in detail. We show the emergence of a strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situations where none of those mechanisms leads to rectification when acting individually. The combined rectification mechanisms may lead to bidirectional transport and to new routes to segregation phenomena. Confined Brownian ratchets could be used to control transport in mesostructures and to engineer new and more efficient devices for transport at the nanoscale.
Resumo:
A model has been developed for evaluating grain size distributions in primary crystallizations where the grain growth is diffusion controlled. The body of the model is grounded in a recently presented mean-field integration of the nucleation and growth kinetic equations, modified conveniently in order to take into account a radius-dependent growth rate, as occurs in diffusion-controlled growth. The classical diffusion theory is considered, and a modification of this is proposed to take into account interference of the diffusion profiles between neighbor grains. The potentiality of the mean-field model to give detailed information on the grain size distribution and transformed volume fraction for transformations driven by nucleation and either interface- or diffusion-controlled growth processes is demonstrated. The model is evaluated for the primary crystallization of an amorphous alloy, giving an excellent agreement with experimental data. Grain size distributions are computed, and their properties are discussed.
Resumo:
We use the mesoscopic nonequilibrium thermodynamics theory to derive the general kinetic equation of a system in the presence of potential barriers. The result is applied to a description of the evolution of systems whose dynamics is influenced by entropic barriers. We analyze in detail the case of diffusion in a domain of irregular geometry in which the presence of the boundaries induces an entropy barrier when approaching the exact dynamics by a coarsening of the description. The corresponding kinetic equation, named the Fick-Jacobs equation, is obtained, and its validity is generalized through the formulation of a scaling law for the diffusion coefficient which depends on the shape of the boundaries. The method we propose can be useful to analyze the dynamics of systems at the nanoscale where the presence of entropy barriers is a common feature.