53 resultados para dS vacua in string theory
Resumo:
We consider vacuum solutions in M theory of the form of a five-dimensional Kaluza-Klein black hole cross T6. In a certain limit, these include the five-dimensional neutral rotating black hole (cross T6). From a type-IIA standpoint, these solutions carry D0 and D6 charges. We show that there is a simple D-brane description which precisely reproduces the Hawking-Bekenstein entropy in the extremal limit, even though supersymmetry is completely broken.
Resumo:
We demonstrate how duality invariance of the low energy expansion of the four-supergraviton amplitude in type II string theory determines the precise coefficients of multiloop logarithmic ultraviolet divergences of maximal supergravity in various dimensions. This is illustrated by the explicit moduli-dependence of terms of the form ¿2k R4, with k ¿ 3, in the effective action. Furthermore, we show that in the supergravity limit the perturbative contributions are swamped by an accumulation of non-perturbative effects of zero-action instantons.
Resumo:
It is known that, in a locally presentable category, localization exists with respect to every set of morphisms, while the statement that localization with respect to every (possibly proper) class of morphisms exists in locally presentable categories is equivalent to a large-cardinal axiom from set theory. One proves similarly, on one hand, that homotopy localization exists with respect to sets of maps in every cofibrantly generated, left proper, simplicial model category M whose underlying category is locally presentable. On the other hand, as we show in this article, the existence of localization with respect to possibly proper classes of maps in a model category M satisfying the above assumptions is implied by a large-cardinal axiom called Vopënka's principle, although we do not know if the reverse implication holds. We also show that, under the same assumptions on M, every endofunctor of M that is idempotent up to homotopy is equivalent to localization with respect to some class S of maps, and if Vopënka's principle holds then S can be chosen to be a set. There are examples showing that the latter need not be true if M is not cofibrantly generated. The above assumptions on M are satisfied by simplicial sets and symmetric spectra over simplicial sets, among many other model categories.
Resumo:
We give the first systematic study of strong isomorphism reductions, a notion of reduction more appropriate than polynomial time reduction when, for example, comparing the computational complexity of the isomorphim problem for different classes of structures. We show that the partial ordering of its degrees is quite rich. We analyze its relationship to a further type of reduction between classes of structures based on purely comparing for every n the number of nonisomorphic structures of cardinality at most n in both classes. Furthermore, in a more general setting we address the question of the existence of a maximal element in the partial ordering of the degrees.
Resumo:
We analyze recent contributions to growth theory based on the model of expanding variety of Romer (1990). In the first part, we present different versions of the benchmark linear model with imperfect competition. These include the labequipment model, labor-for-intermediates and directed technical change . We review applications of the expanding variety framework to the analysis of international technology diffusion, trade, cross-country productivity differences, financial development and fluctuations. In many such applications, a key role is played by complementarities in the process of innovation.
Resumo:
We consider an economy where the production technology has constantreturns to scale but where in the descentralized equilibrium thereare aggregate increasing returns to scale. The result follows froma positive contracting externality among firms. If a firms issurrounded by more firms, employees have more opportunitiesoutside their own firm. This improves employees' incentives toinvest in the presence of ex post renegotiation at the firm level,at not cost. Our leading result is that if a region is sparselypopulated or if the degree of development in the region is lowenough, there are multiple equilibria in the level of sectorialemployment. From the theoretical model we derive a non-linearfirst-order censored difference equation for sectoral employment.Our results are strongly consistent with the multiple equilibriahypothesis and the existence of a sectoral critical scale (belowwich the sector follows a delocation process). The scale of theregions' population and the degree of development reduce thecritical scale of the sector.
Resumo:
A new aggregation method for decision making is presented by using induced aggregation operators and the index of maximum and minimum level. Its main advantage is that it can assess complex reordering processes in the aggregation that represent complex attitudinal characters of the decision maker such as psychological or personal factors. A wide range of properties and particular cases of this new approach are studied. A further generalization by using hybrid averages and immediate weights is also presented. The key issue in this approach against the previous model is that we can use the weighted average and the ordered weighted average in the same formulation. Thus, we are able to consider the subjective attitude and the degree of optimism of the decision maker in the decision process. The paper ends with an application in a decision making problem based on the use of the assignment theory.
Resumo:
A new model for dealing with decision making under risk by considering subjective and objective information in the same formulation is here presented. The uncertain probabilistic weighted average (UPWA) is also presented. Its main advantage is that it unifies the probability and the weighted average in the same formulation and considering the degree of importance that each case has in the analysis. Moreover, it is able to deal with uncertain environments represented in the form of interval numbers. We study some of its main properties and particular cases. The applicability of the UPWA is also studied and it is seen that it is very broad because all the previous studies that use the probability or the weighted average can be revised with this new approach. Focus is placed on a multi-person decision making problem regarding the selection of strategies by using the theory of expertons.
Resumo:
In Einstein-Maxwell theory, magnetic flux lines are "expelled" from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of ¿Meissner effect¿ which is characteristic of superconducting media. We review some of the evidence for this effect and present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the world volume of ¿light¿ superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of "heavy," or gravitating, superconducting p-branes.
Resumo:
We show that in the limit of a large number of dimensions a wide class of nonextremal neutral black holes has a universal near-horizon limit. The limiting geometry is the two-dimensional black hole of string theory with a two-dimensional target space. Its conformal symmetry explains the properties of massless scalars found recently in the large-D limit. For black branes with string charges, the near-horizon geometry is that of the three-dimensional black strings of Horne and Horowitz. The analogies between the α′ expansion in string theory and the large-D expansion in gravity suggest a possible effective string description of the large-D limit of black holes. We comment on applications to several subjects, in particular to the problem of critical collapse.
Resumo:
We present a solution to the problem of defining a counterpart in Algebraic Set Theory of the construction of internal sheaves in Topos Theory. Our approach is general in that we consider sheaves as determined by Lawvere-Tierney coverages, rather than by Grothen-dieck coverages, and assume only a weakening of the axioms for small maps originally introduced by Joyal and Moerdijk, thus subsuming the existing topos-theoretic results.
Resumo:
The gauge-invariant actions for open and closed free bosonic string field theories are obtained from the string field equations in the conformal gauge using the cohomology operations of Banks and Peskin. For the closed-string theory no restrictions are imposed on the gauge parameters.
Resumo:
We study the contribution to vacuum decay in field theory due to the interaction between the long- and short-wavelength modes of the field. The field model considered consists of a scalar field of mass M with a cubic term in the potential. The dynamics of the long-wavelength modes becomes diffusive in this interaction. The diffusive behavior is described by the reduced Wigner function that characterizes the state of the long-wavelength modes. This function is obtained from the whole Wigner function by integration of the degrees of freedom of the short-wavelength modes. The dynamical equation for the reduced Wigner function becomes a kind of Fokker-Planck equation which is solved with suitable boundary conditions enforcing an initial metastable vacuum state trapped in the potential well. As a result a finite activation rate is found, even at zero temperature, for the formation of true vacuum bubbles of size M-1. This effect makes a substantial contribution to the total decay rate.