45 resultados para cutting stock problem with setups
Resumo:
The General Assembly Line Balancing Problem with Setups (GALBPS) was recently defined in the literature. It adds sequence-dependent setup time considerations to the classical Simple Assembly Line Balancing Problem (SALBP) as follows: whenever a task is assigned next to another at the same workstation, a setup time must be added to compute the global workstation time, thereby providing the task sequence inside each workstation. This paper proposes over 50 priority-rule-based heuristic procedures to solve GALBPS, many of which are an improvement upon heuristic procedures published to date.
Resumo:
The division problem consists of allocating a given amount of an homogeneous and perfectly divisible good among a group of agents with single-peaked preferences on the set of their potential shares. A rule proposes a vector of shares for each division problem. The literature has implicitly assumed that agents will find acceptable any share they are assigned to. In this paper we consider the division problem when agents' participation is voluntary. Each agent has an idiosyncratic interval of acceptable shares where his preferences are single-peaked. A rule has to propose to each agent either to not participate or an acceptable share because otherwise he would opt out and this would require to reassign some of the remaining agents' shares. We study a subclass of efficient and consistent rules and characterize extensions of the uniform rule that deal explicitly with agents' voluntary participation.
Resumo:
The standard one-machine scheduling problem consists in schedulinga set of jobs in one machine which can handle only one job at atime, minimizing the maximum lateness. Each job is available forprocessing at its release date, requires a known processing timeand after finishing the processing, it is delivery after a certaintime. There also can exists precedence constraints between pairsof jobs, requiring that the first jobs must be completed beforethe second job can start. An extension of this problem consistsin assigning a time interval between the processing of the jobsassociated with the precedence constrains, known by finish-starttime-lags. In presence of this constraints, the problem is NP-hardeven if preemption is allowed. In this work, we consider a specialcase of the one-machine preemption scheduling problem with time-lags, where the time-lags have a chain form, and propose apolynomial algorithm to solve it. The algorithm consist in apolynomial number of calls of the preemption version of the LongestTail Heuristic. One of the applicability of the method is to obtainlower bounds for NP-hard one-machine and job-shop schedulingproblems. We present some computational results of thisapplication, followed by some conclusions.
Resumo:
This paper proposes to estimate the covariance matrix of stock returnsby an optimally weighted average of two existing estimators: the samplecovariance matrix and single-index covariance matrix. This method isgenerally known as shrinkage, and it is standard in decision theory andin empirical Bayesian statistics. Our shrinkage estimator can be seenas a way to account for extra-market covariance without having to specifyan arbitrary multi-factor structure. For NYSE and AMEX stock returns from1972 to 1995, it can be used to select portfolios with significantly lowerout-of-sample variance than a set of existing estimators, includingmulti-factor models.
Resumo:
The need for integration in the supply chain management leads us to considerthe coordination of two logistic planning functions: transportation andinventory. The coordination of these activities can be an extremely importantsource of competitive advantage in the supply chain management. The battle forcost reduction can pass through the equilibrium of transportation versusinventory managing costs. In this work, we study the specific case of aninventory-routing problem for a week planning period with different types ofdemand. A heuristic methodology, based on the Iterated Local Search, isproposed to solve the Multi-Period Inventory Routing Problem with stochasticand deterministic demand.
Resumo:
This paper studies the equilibrating process of several implementationmechanisms using naive adaptive dynamics. We show that the dynamics convergeand are stable, for the canonical mechanism of implementation in Nash equilibrium.In this way we cast some doubt on the criticism of ``complexity'' commonlyused against this mechanism. For mechanisms that use more refined equilibrium concepts,the dynamics converge but are not stable. Some papers in the literatureon implementation with refined equilibrium concepts have claimed that themechanisms they propose are ``simple'' and implement ``everything'' (incontrast with the canonical mechanism). The fact that some of these ``simple''mechanisms have unstable equilibria suggests that these statements shouldbe interpreted with some caution.
On the existence of bi-pyramidal central configurations of the n + 2-body problem with an n-gon base
Resumo:
Abstract. In this paper we prove the existence of central con gurations of the n + 2{body problem where n equal masses are located at the vertices of a regular n{gon and the remaining 2 masses, which are not necessarily equal, are located on the straight line orthogonal to the plane containing the n{gon passing through its center. Here this kind of central con gurations is called bi{pyramidal central con gurations. In particular, we prove that if the masses mn+1 and mn+2 and their positions satisfy convenient relations, then the con guration is central. We give explicitly those relations.
Resumo:
One of the assumptions of the Capacitated Facility Location Problem (CFLP) is thatdemand is known and fixed. Most often, this is not the case when managers take somestrategic decisions such as locating facilities and assigning demand points to thosefacilities. In this paper we consider demand as stochastic and we model each of thefacilities as an independent queue. Stochastic models of manufacturing systems anddeterministic location models are put together in order to obtain a formula for thebacklogging probability at a potential facility location.Several solution techniques have been proposed to solve the CFLP. One of the mostrecently proposed heuristics, a Reactive Greedy Adaptive Search Procedure, isimplemented in order to solve the model formulated. We present some computationalexperiments in order to evaluate the heuristics performance and to illustrate the use ofthis new formulation for the CFLP. The paper finishes with a simple simulationexercise.
Resumo:
Revenue management practices often include overbooking capacity to account for customerswho make reservations but do not show up. In this paper, we consider the network revenuemanagement problem with no-shows and overbooking, where the show-up probabilities are specificto each product. No-show rates differ significantly by product (for instance, each itinerary andfare combination for an airline) as sale restrictions and the demand characteristics vary byproduct. However, models that consider no-show rates by each individual product are difficultto handle as the state-space in dynamic programming formulations (or the variable space inapproximations) increases significantly. In this paper, we propose a randomized linear program tojointly make the capacity control and overbooking decisions with product-specific no-shows. Weestablish that our formulation gives an upper bound on the optimal expected total profit andour upper bound is tighter than a deterministic linear programming upper bound that appearsin the existing literature. Furthermore, we show that our upper bound is asymptotically tightin a regime where the leg capacities and the expected demand is scaled linearly with the samerate. We also describe how the randomized linear program can be used to obtain a bid price controlpolicy. Computational experiments indicate that our approach is quite fast, able to scale to industrialproblems and can provide significant improvements over standard benchmarks.
Resumo:
It is shown that propagation around a circular bend in a quantum wire is well approximated by a one¿dimensional problem with a square¿well potential replacing the bend. Simple analytic expressions are obtained for the transmission and bound states.
Resumo:
We prove the existence of infinitely many symmetric periodic orbits for a regularized rhomboidal five-body problem with four small masses placed at the vertices of a rhombus centered in the fifth mass. The main tool for proving the existence of such periodic orbits is the analytic continuation method of Poincaré together with the symmetries of the problem. © 2006 American Institute of Physics.
Resumo:
Abstract In this paper we study numerically a new type of central configurations of the 3n-body problem with equal masses which consist of three n-gons contained in three planes z = 0 and z = ±β = 0. The n-gon on z = 0 is scaled by a factor α and it is rotated by an angle of π/n with respect to the ones on z = ±β. In this kind of configurations, the masses on the planes z = 0 and z = β are at the vertices of an antiprism with bases of different size. The same occurs with the masses on z = 0 and z = −β. We call this kind of central configurations double-antiprism central configurations. We will show the existence of central configurations of this type.
Resumo:
A major problem with holographic optical tweezers (HOTs) is their incompatibility with laser-based position detection methods, such as back-focal-plane interferometry (BFPI). The alternatives generally used with HOTs, like high-speed video tracking, do not offer the same spatial and temporal bandwidths. This has limited the use of this technique in precise quantitative experiments. In this paper, we present an optical trap design that combines digital holography and back-focal-plane displacement detection. We show that, with a particularly simple setup, it is possible to generate a set of multiple holographic traps and an additional static non-holographic trap with orthogonal polarizations and that they can be, therefore, easily separated for measuring positions and forces with the high positional and temporal resolutions of laser-based detection. We prove that measurements from both polarizations contain less than 1% crosstalk and that traps in our setup are harmonic within the typical range. We further tested the instrument in a DNA stretching experiment and we discuss an interesting property of this configuration: the small drift of the differential signal between traps.
Resumo:
In this paper we consider a sequential allocation problem with n individuals. The first individual can consume any amount of some endowment leaving the remaining for the second individual, and so on. Motivated by the limitations associated with the cooperative or non-cooperative solutions we propose a new approach. We establish some axioms that should be satisfied, representativeness, impartiality, etc. The result is a unique asymptotic allocation rule. It is shown for n = 2; 3; 4; and a claim is made for general n. We show that it satisfies a set of desirable properties. Key words: Sequential allocation rule, River sharing problem, Cooperative and non-cooperative games, Dictator and ultimatum games. JEL classification: C79, D63, D74.