49 resultados para Non-Commutative Geometry
Resumo:
We study all the symmetries of the free Schr odinger equation in the non-commu- tative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schröodinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.
Resumo:
We study all the symmetries of the free Schrödinger equation in the non-commu- tative plane. These symmetry transformations form an infinite-dimensional Weyl algebra that appears naturally from a two-dimensional Heisenberg algebra generated by Galilean boosts and momenta. These infinite high symmetries could be useful for constructing non-relativistic interacting higher spin theories. A finite-dimensional subalgebra is given by the Schröodinger algebra which, besides the Galilei generators, contains also the dilatation and the expansion. We consider the quantization of the symmetry generators in both the reduced and extended phase spaces, and discuss the relation between both approaches.
Resumo:
Let A be a semiprime 2 and 3-torsion free non-commutative associative algebra. We show that the Lie algebra Der(A) of(associative) derivations of A is strongly non-degenerate, which is a strong form of semiprimeness for Lie algebras, under some additional restrictions on the center of A. This result follows from a description of the quadratic annihilator of a general Lie algebra inside appropriate Lie overalgebras. Similar results are obtained for an associative algebra A with involution and the Lie algebra SDer(A) of involution preserving derivations of A
Resumo:
The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Resumo:
Equivalence classes of normal form games are defined using the geometryof correspondences of standard equilibiurm concepts like correlated, Nash,and robust equilibrium or risk dominance and rationalizability. Resultingequivalence classes are fully characterized and compared across differentequilibrium concepts for 2 x 2 games. It is argued that the procedure canlead to broad and game-theoretically meaningful distinctions of games aswell as to alternative ways of viewing and testing equilibrium concepts.Larger games are also briefly considered.
Resumo:
We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). The dynamical equations of motion and their compatibility and consistency are carefully studied, making clear that all the characteristics of the Lagrangian and the Hamiltonian formalisms are recovered in this formulation. As an example, it is studied a semidiscretization of the nonlinear wave equation proving the applicability of the proposed formalism.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
This note describes ParallelKnoppix, a bootable CD that allows econometricians with average knowledge of computers to create and begin using a high performance computing cluster for parallel computing in very little time. The computers used may be heterogeneous machines, and clusters of up to 200 nodes are supported. When the cluster is shut down, all machines are in their original state, so their temporary use in the cluster does not interfere with their normal uses. An example shows how a Monte Carlo study of a bootstrap test procedure may be done in parallel. Using a cluster of 20 nodes, the example runs approximately 20 times faster than it does on a single computer.
Resumo:
This note describes ParallelKnoppix, a bootable CD that allows creation of a Linux cluster in very little time. An experienced user can create a cluster ready to execute MPI programs in less than 10 minutes. The computers used may be heterogeneous machines, of the IA-32 architecture. When the cluster is shut down, all machines except one are in their original state, and the last can be returned to its original state by deleting a directory. The system thus provides a means of using non-dedicated computers to create a cluster. An example session is documented.
Resumo:
We study of noncompact Euclidean cone manifolds with cone angles less than c&2π and singular locus a submanifold. More precisely, we describe its structure outside a compact set. As a corol lary we classify those with cone angles & 2π/3 and those with cone angles = 2π/3.