32 resultados para Histogram quotient
Resumo:
We introduce simple nonparametric density estimators that generalize theclassical histogram and frequency polygon. The new estimators are expressed as linear combination of density functions that are piecewisepolynomials, where the coefficients are optimally chosen in order to minimize the integrated square error of the estimator. We establish the asymptotic behaviour of the proposed estimators, and study theirperformance in a simulation study.
Resumo:
By identifying types whose low-order beliefs up to level li about the state of nature coincide, weobtain quotient type spaces that are typically smaller than the original ones, preserve basic topologicalproperties, and allow standard equilibrium analysis even under bounded reasoning. Our Bayesian Nash(li; l-i)-equilibria capture players inability to distinguish types belonging to the same equivalence class.The case with uncertainty about the vector of levels (li; l-i) is also analyzed. Two examples illustratethe constructions.
Resumo:
Although the histogram is the most widely used density estimator, itis well--known that the appearance of a constructed histogram for a given binwidth can change markedly for different choices of anchor position. In thispaper we construct a stability index $G$ that assesses the potential changesin the appearance of histograms for a given data set and bin width as theanchor position changes. If a particular bin width choice leads to an unstableappearance, the arbitrary choice of any one anchor position is dangerous, anda different bin width should be considered. The index is based on the statisticalroughness of the histogram estimate. We show via Monte Carlo simulation thatdensities with more structure are more likely to lead to histograms withunstable appearance. In addition, ignoring the precision to which the datavalues are provided when choosing the bin width leads to instability. We provideseveral real data examples to illustrate the properties of $G$. Applicationsto other binned density estimators are also discussed.
Resumo:
We show that the motive of the quotient of a scheme by a finite group coincides with the invariant submotive.
Resumo:
In this paper, some steganalytic techniques designed to detect the existence of hidden messages using histogram shifting methods are presented. Firstly, some techniques to identify specific methods of histogram shifting, based on visible marks on the histogram or abnormal statistical distributions are suggested. Then, we present a general technique capable of detecting all histogram shifting techniques analyzed. This technique is based on the effect of histogram shifting methods on the "volatility" of the histogram of differences and the study of its reduction whenever new data are hidden.
Resumo:
Peer-reviewed
Resumo:
We explore which types of finiteness properties are possible for intersections of geometrically finite groups of isometries in negatively curved symmetric rank one spaces. Our main tool is a twist construction which takes as input a geometrically finite group containing a normal subgroup of infinite index with given finiteness properties and infinite Abelian quotient, and produces a pair of geometrically finite groups whose intersection is isomorphic to the normal subgroup.
Resumo:
Recently there has been a great deal of work on noncommutative algebraic cryptography. This involves the use of noncommutative algebraic objects as the platforms for encryption systems. Most of this work, such as the Anshel-Anshel-Goldfeld scheme, the Ko-Lee scheme and the Baumslag-Fine-Xu Modular group scheme use nonabelian groups as the basic algebraic object. Some of these encryption methods have been successful and some have been broken. It has been suggested that at this point further pure group theoretic research, with an eye towards cryptographic applications, is necessary.In the present study we attempt to extend the class of noncommutative algebraic objects to be used in cryptography. In particular we explore several different methods to use a formal power series ring R && x1; :::; xn && in noncommuting variables x1; :::; xn as a base to develop cryptosystems. Although R can be any ring we have in mind formal power series rings over the rationals Q. We use in particular a result of Magnus that a finitely generated free group F has a faithful representation in a quotient of the formal power series ring in noncommuting variables.
Resumo:
Existe una clara relación entre prematuridad y un bajo rendimiento cognitivo y escolar. Sin embargo, los efectos concretos del nacimiento prematuro sobre el funcionamiento cognitivo así como sobre el desarrollo cerebral a largo plazo son poco conocidos. Objetivos: Identificar las disfunciones cognitivas concretas en adolescentes que nacieron prematuros mediante una evaluación neuropsicológica exhaustiva, y relacionar los datos cognitivos con la posible afectación del cuerpo calloso. Metodología y Resultados: se comparó dos muestras de sujetos prematuros y sujetos nacidos a término. Se evaluó el rendimiento cognitivo general y específico, y se cuantificó la estructura cerebral del cuerpo calloso. Se realizaron varios análisis estadísticos y se redactaron diversos artículos presentando los resultados obtenidos. Resultados: adolescentes con antecedentes de prematuridad: a) presentan dificultades cognitivas y anormalidades estructurales, más relacionadas con la edad gestacional que con el peso al nacer; b) tienen déficits cognitivos específicos que pueden explicarse parcialmente por sus disfunciones en el rendimiento cognitivo general; c) la media de sus puntuaciones en el CI se sitúa en el rango normal; d) los subtests de las escalas Wechsler no presentan el mismo grado de sensibilidad; e) presentan una reducción de tamaño del cuerpo calloso, f) más acusada en el genu, posterior midbody y splenium; g) existe una asociación específica entre el genu y el menor rendimiento en funciones del lóbulo prefrontal; h) la edad gestacional presenta una clara relación con las anormalidades del cuerpo calloso y con el bajo rendimiento cognitivo general.
Resumo:
In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorification-nerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak equivalences various internal equivalences defined via Grothendieck topologies. Thirdly, DblCat inherits a model structure as a category of algebras over a 2-monad. Some of these model structures coincide and the different points of view give us further results about cofibrant replacements and cofi brant objects. As part of this program we give explicit descriptions and discuss properties of free double categories, quotient double categories, colimits of double categories, and several nerves and categorifications.
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.
Resumo:
This paper develops a methodology to estimate the entire population distributions from bin-aggregated sample data. We do this through the estimation of the parameters of mixtures of distributions that allow for maximal parametric flexibility. The statistical approach we develop enables comparisons of the full distributions of height data from potential army conscripts across France's 88 departments for most of the nineteenth century. These comparisons are made by testing for differences-of-means stochastic dominance. Corrections for possible measurement errors are also devised by taking advantage of the richness of the data sets. Our methodology is of interest to researchers working on historical as well as contemporary bin-aggregated or histogram-type data, something that is still widely done since much of the information that is publicly available is in that form, often due to restrictions due to political sensitivity and/or confidentiality concerns.
Resumo:
The main goal of this article is to give an explicit rigid analytic uniformization of the maximal toric quotient of the Jacobian of a Shimura curve over Q at a prime dividing exactly the level. This result can be viewed as complementary to the classical theorem of Cerednik and Drinfeld which provides rigid analytic uniformizations at primes dividing the discriminant. As a corollary, we offer a proof of a conjecture formulated by M. Greenberg in hispaper on Stark-Heegner points and quaternionic Shimura curves, thus making Greenberg's construction of local points on elliptic curves over Q unconditional.
Resumo:
La regeneració òssia és un procés estudiat per experts de tot el món. Aquests experts estudien materials capaços d’accelerar el procés de formació de teixit ossi en zones on s’han produït defectes ossis. Després d’un determinat període de temps de l’aplicació dels materials d’estudi en la zona on hi havia una manca de teixit ossi, s’obtenen imatges d’aquesta zona on l’expert mitjançant l’ inspecció visual d’aquestes imatges avalua si l’os s’ha regenerat bé o no. El problema d’aquest mètode d’avaluació es que requereix d’un expert on la valoració d’aquest és subjectiva i difícil de quantificar, el que pot provocar que hi hagi discordança entre experts. Amb la finalitat de aprofitar les imatges en que es basa l’expert per avaluar la capacitat de regeneració òssia dels materials d’estudi es proposa realitzar un anàlisi quantitatiu de la regeneració òssia basat en el processament d’imatge. L’algorisme dissenyat es capaç de classificar imatges de la mandíbula en: imatges de regeneració bona i dolenta mitjançant la parametrització de l’histograma de nivells de grisos de la imatge, solucionant la falta d’objectivitat del mètode d’avaluació de la regeneració òssia i la necessitat d’un expert per realitzar-la.
Resumo:
Given positive integers n and m, we consider dynamical systems in which n copies of a topological space is homeomorphic to m copies of that same space. The universal such system is shown to arise naturally from the study of a C*-algebra we denote by Om;n, which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm;n, a process meant to transform the generating set of partial isometries of Lm;n into a tame set. Describing Om;n as the crossed-product of the universal (m; n) -dynamical system by a partial action of the free group Fm+n, we show that Om;n is not exact when n and m are both greater than or equal to 2, but the corresponding reduced crossed-product, denoted Or m;n, is shown to be exact and non-nuclear. Still under the assumption that m; n &= 2, we prove that the partial action of Fm+n is topologically free and that Or m;n satisfies property (SP) (small projections). We also show that Or m;n admits no finite dimensional representations. The techniques developed to treat this system include several new results pertaining to the theory of Fell bundles over discrete groups.