110 resultados para Consistent Conditional Correlation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a parsimonious regime-switching approach to model the correlations between assets, the threshold conditional correlation (TCC) model. This method allows the dynamics of the correlations to change from one state (or regime) to another as a function of observable transition variables. Our model is similar in spirit to Silvennoinen and Teräsvirta (2009) and Pelletier (2006) but with the appealing feature that it does not suffer from the course of dimensionality. In particular, estimation of the parameters of the TCC involves a simple grid search procedure. In addition, it is easy to guarantee a positive definite correlation matrix because the TCC estimator is given by the sample correlation matrix, which is positive definite by construction. The methodology is illustrated by evaluating the behaviour of international equities, govenrment bonds and major exchange rates, first separately and then jointly. We also test and allow for different parts in the correlation matrix to be governed by different transition variables. For this, we estimate a multi-threshold TCC specification. Further, we evaluate the economic performance of the TCC model against a constant conditional correlation (CCC) estimator using a Diebold-Mariano type test. We conclude that threshold correlation modelling gives rise to a significant reduction in portfolio´s variance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper provides evidence on the sources of co-movement in monthly US and UK stock price movements by investigating the role of macroeconomic and financial variables in a bivariate system with time-varying conditional correlations. Crosscountry communality in response is uncovered, with changes in the US Federal Funds rate, UK bond yields and oil prices having similar negative effects in both markets. Other variables also play a role, especially for the UK market. These effects do not, however, explain the marked increase in cross-market correlations observed from around 2000, which we attribute to time variation in the correlations of shocks to these markets. A regime-switching smooth transition model captures this time variation well and shows the correlations increase dramatically around 1999-2000. JEL classifications: C32, C51, G15 Keywords: international stock returns, DCC-GARCH model, smooth transition conditional correlation GARCH model, model evaluation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper measures the degree in stock market integration between five Eastern European countries and the Euro-zone. A potentially gradual transition in correlations is accommodated by smooth transition conditional correlation models. We find that the correlation between stock markets has increased from 2001 to 2007. In particular, the Czech and Polish markets show a higher correlation to the Euro-zone. However, this is not a broad-based phenomenon across Eastern Europe. We also find that the increase in correlations is not a reflection of a world-wide phenomenon of financial integration but appears to be specific to the European market. JEL classifications: C32; C51; F36; G15 Keywords: Multivariate GARCH; Smooth Transition Conditional Correlation; Stock Return Comovement; New EU Members.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The advent of the European Union has decreased the diversification benefits available from country based equity market indices in the region. This paper measures the increase in stock integration between the three largest new EU members (Hungary, the Czech Republic and Poland who joined in May 2004) and the Euro-zone. A potentially gradual transition in correlations is accommodated in a single VAR model by embedding smooth transition conditional correlation models with fat tails, spillovers, volatility clustering, and asymmetric volatility effects. At the country market index level all three Eastern European markets show a considerable increase in correlations in 2006. At the industry level the dates and transition periods for the correlations differ, and the correlations are lower although also increasing. The results show that sectoral indices in Eastern European markets may provide larger diversification opportunities than the aggregate market. JEL classifications: C32; C51; F36; G15 Keywords: Multivariate GARCH; Smooth Transition Conditional Correlation; Stock Return Comovement; Sectoral correlations; New EU Members

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A density-functional self-consistent calculation of the ground-state electronic density of quantum dots under an arbitrary magnetic field is performed. We consider a parabolic lateral confining potential. The addition energy, E(N+1)-E(N), where N is the number of electrons, is compared with experimental data and the different contributions to the energy are analyzed. The Hamiltonian is modeled by a density functional, which includes the exchange and correlation interactions and the local formation of Landau levels for different equilibrium spin populations. We obtain an analytical expression for the critical density under which spontaneous polarization, induced by the exchange interaction, takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In longitudinal studies where subjects experience recurrent incidents over a period of time, such as respiratory infections, fever or diarrhea, statistical methods are required to take into account the within-subject correlation. Methods: For repeated events data with censored failure, the independent increment (AG), marginal (WLW) and conditional (PWP) models are three multiple failure models that generalize Cox"s proportional hazard model. In this paper, we revise the efficiency, accuracy and robustness of all three models under simulated scenarios with varying degrees of within-subject correlation, censoring levels, maximum number of possible recurrences and sample size. We also study the methods performance on a real dataset from a cohort study with bronchial obstruction. Results: We find substantial differences between methods and there is not an optimal method. AG and PWP seem to be preferable to WLW for low correlation levels but the situation reverts for high correlations. Conclusions: All methods are stable in front of censoring, worsen with increasing recurrence levels and share a bias problem which, among other consequences, makes asymptotic normal confidence intervals not fully reliable, although they are well developed theoretically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control of a chaotic system by homogeneous nonlinear driving, when a conditional Lyapunov exponent is zero, may give rise to special and interesting synchronizationlike behaviors in which the response evolves in perfect correlation with the drive. Among them, there are the amplification of the drive attractor and the shift of it to a different region of phase space. In this paper, these synchronizationlike behaviors are discussed, and demonstrated by computer simulation of the Lorentz model [E. N. Lorenz, J. Atmos. Sci. 20 130 (1963)] and the double scroll [T. Matsumoto, L. O. Chua, and M. Komuro, IEEE Trans. CAS CAS-32, 798 (1985)].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the derivation of new estimators and performance bounds for the problem of timing estimation of (linearly) digitally modulated signals. The conditional maximum likelihood (CML) method is adopted, in contrast to the classical low-SNR unconditional ML (UML) formulationthat is systematically applied in the literature for the derivationof non-data-aided (NDA) timing-error-detectors (TEDs). A new CML TED is derived and proved to be self-noise free, in contrast to the conventional low-SNR-UML TED. In addition, the paper provides a derivation of the conditional Cramér–Rao Bound (CRB ), which is higher (less optimistic) than the modified CRB (MCRB)[which is only reached by decision-directed (DD) methods]. It is shown that the CRB is a lower bound on the asymptotic statisticalaccuracy of the set of consistent estimators that are quadratic with respect to the received signal. Although the obtained boundis not general, it applies to most NDA synchronizers proposed in the literature. A closed-form expression of the conditional CRBis obtained, and numerical results confirm that the CML TED attains the new bound for moderate to high Eg/No.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissolved organic matter (DOM) is a complex mixture of organic compounds, ubiquitous in marine and freshwater systems. Fluorescence spectroscopy, by means of Excitation-Emission Matrices (EEM), has become an indispensable tool to study DOM sources, transport and fate in aquatic ecosystems. However the statistical treatment of large and heterogeneous EEM data sets still represents an important challenge for biogeochemists. Recently, Self-Organising Maps (SOM) has been proposed as a tool to explore patterns in large EEM data sets. SOM is a pattern recognition method which clusterizes and reduces the dimensionality of input EEMs without relying on any assumption about the data structure. In this paper, we show how SOM, coupled with a correlation analysis of the component planes, can be used both to explore patterns among samples, as well as to identify individual fluorescence components. We analysed a large and heterogeneous EEM data set, including samples from a river catchment collected under a range of hydrological conditions, along a 60-km downstream gradient, and under the influence of different degrees of anthropogenic impact. According to our results, chemical industry effluents appeared to have unique and distinctive spectral characteristics. On the other hand, river samples collected under flash flood conditions showed homogeneous EEM shapes. The correlation analysis of the component planes suggested the presence of four fluorescence components, consistent with DOM components previously described in the literature. A remarkable strength of this methodology was that outlier samples appeared naturally integrated in the analysis. We conclude that SOM coupled with a correlation analysis procedure is a promising tool for studying large and heterogeneous EEM data sets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In longitudinal studies where subjects experience recurrent incidents over a period of time, such as respiratory infections, fever or diarrhea, statistical methods are required to take into account the within-subject correlation. Methods: For repeated events data with censored failure, the independent increment (AG), marginal (WLW) and conditional (PWP) models are three multiple failure models that generalize Cox"s proportional hazard model. In this paper, we revise the efficiency, accuracy and robustness of all three models under simulated scenarios with varying degrees of within-subject correlation, censoring levels, maximum number of possible recurrences and sample size. We also study the methods performance on a real dataset from a cohort study with bronchial obstruction. Results: We find substantial differences between methods and there is not an optimal method. AG and PWP seem to be preferable to WLW for low correlation levels but the situation reverts for high correlations. Conclusions: All methods are stable in front of censoring, worsen with increasing recurrence levels and share a bias problem which, among other consequences, makes asymptotic normal confidence intervals not fully reliable, although they are well developed theoretically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies collective choice rules whose outcomes consist of a collection of simultaneous decisions, each one of which is the only concern of some group of individuals in society. The need for such rules arises in different contexts, including the establishment of jurisdictions, the location of multiple public facilities, or the election of representative committees. We define a notion of allocation consistency requiring that each partial aspect of the global decision taken by society as a whole should be ratified by the group of agents who are directly concerned with this particular aspect. We investigate the possibility of designing envy-free allocation consistent rules, we also explore whether such rules may also respect the Condorcet criterion.