20 resultados para Algebraic thinking
Resumo:
We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue measure.
Resumo:
The aim of this paper is to unify the points of view of three recent and independent papers (Ventura 1997, Margolis, Sapir and Weil 2001 and Kapovich and Miasnikov 2002), where similar modern versions of a 1951 theorem of Takahasi were given. We develop a theory of algebraic extensions for free groups, highlighting the analogies and differences with respect to the corresponding classical fieldt heoretic notions, and we discuss in detail the notion of algebraic closure. We apply that theory to the study and the computation of certain algebraic properties of subgroups (e.g. being malnormal, pure, inert or compressed, being closed in certain profinite topologies) and the corresponding closure operators. We also analyze the closure of a subgroup under the addition of solutions of certain sets of equations.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Aquest treball analitza el “Tratado y libro de arte mayor o álgebra” que forma part del manuscrit 2294 de la Biblioteca de la Universitat de Salamanca, datat el 1590. El seu autor és Diego Pérez de Mesa. L’objectiu d’aquest estudi és aportar nous elements que ajudin a entendre quin era l’estatus de l’àlgebra a la Península Ibèrica en un segle que va ser clau en el seu desenvolupament. Primer es descriu el manuscrit i després es reflexiona sobre les seves aportacions a la matemàtica, mostrant algunes característiques originals d’aquesta àlgebra enfront d’altres àlgebres de la Península Ibèrica del segle XVI.
Resumo:
The first main result of the paper is a criterion for a partially commutative group G to be a domain. It allows us to reduce the study of algebraic sets over G to the study of irreducible algebraic sets, and reduce the elementary theory of G (of a coordinate group over G) to the elementary theories of the direct factors of G (to the elementary theory of coordinate groups of irreducible algebraic sets). Then we establish normal forms for quantifier-free formulas over a non-abelian directly indecomposable partially commutative group H. Analogously to the case of free groups, we introduce the notion of a generalised equation and prove that the positive theory of H has quantifier elimination and that arbitrary first-order formulas lift from H to H * F, where F is a free group of finite rank. As a consequence, the positive theory of an arbitrary partially commutative group is decidable.
Resumo:
Given an algebraic curve in the complex affine plane, we describe how to determine all planar polynomial vector fields which leave this curve invariant. If all (finite) singular points of the curve are nondegenerate, we give an explicit expression for these vector fields. In the general setting we provide an algorithmic approach, and as an alternative we discuss sigma processes.
Resumo:
We present a solution to the problem of defining a counterpart in Algebraic Set Theory of the construction of internal sheaves in Topos Theory. Our approach is general in that we consider sheaves as determined by Lawvere-Tierney coverages, rather than by Grothen-dieck coverages, and assume only a weakening of the axioms for small maps originally introduced by Joyal and Moerdijk, thus subsuming the existing topos-theoretic results.
Resumo:
Projecte de recerca elaborat a partir d’una estada a la School of Mathematics and Statistics de la University of Plymouth, United Kingdom, entre abril juliol del 2007.Aquesta investigació és encara oberta i la memòria que presento constitueix un informe de la recerca que estem duent a terme actualment. En aquesta nota estudiem els centres isòcrons dels sistemes Hamiltonians analítics, parant especial atenció en el cas polinomial. Ens centrem en els anomenats quadratic-like Hamiltonian systems. Diverses propietats dels centres isòcrons d'aquest tipus de sistemes van ser donades a [A. Cima, F. Mañosas and J. Villadelprat, Isochronicity for several classes of Hamiltonian systems, J. Di®erential Equations 157 (1999) 373{413]. Aquell article estava centrat principalment en el cas en que A; B i C fossin funcions analítiques. El nostre objectiu amb l'estudi que estem duent a terme és investigar el cas en el que aquestes funcions són polinomis. En aquesta nota formulem una conjectura concreta sobre les propietats algebraiques que venen forçades per la isocronia del centre i provem alguns resultats parcials.
Resumo:
We consider linear optimization over a nonempty convex semi-algebraic feasible region F. Semidefinite programming is an example. If F is compact, then for almost every linear objective there is a unique optimal solution, lying on a unique \active" manifold, around which F is \partly smooth", and the second-order sufficient conditions hold. Perturbing the objective results in smooth variation of the optimal solution. The active manifold consists, locally, of these perturbed optimal solutions; it is independent of the representation of F, and is eventually identified by a variety of iterative algorithms such as proximal and projected gradient schemes. These results extend to unbounded sets F.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
It is proved the algebraic equality between Jennrich's (1970) asymptotic$X^2$ test for equality of correlation matrices, and a Wald test statisticderived from Neudecker and Wesselman's (1990) expression of theasymptoticvariance matrix of the sample correlation matrix.
Resumo:
This paper focuses on the connection between the Brauer group and the 0-cycles of an algebraic variety. We give an alternative construction of the second l-adic Abel-Jacobi map for such cycles, linked to the algebraic geometry of Severi-Brauer varieties on X. This allows us then to relate this Abel-Jacobi map to the standard pairing between 0-cycles and Brauer groups (see [M], [L]), completing results from [M] in this direction. Second, for surfaces, it allows us to present this map according to the more geometrical approach devised by M. Green in the framework of (arithmetic) mixed Hodge structures (see [G]). Needless to say, this paper owes much to the work of U. Jannsen and, especially, to his recently published older letter [J4] to B. Gross.
Resumo:
In this note we describe the intersection of all quadric hypersur- faces containing a given linearly normal smooth projective curve of genus n and degree 2n + 1
Resumo:
Computer simulations of a colloidal particle suspended in a fluid confined by rigid walls show that, at long times, the velocity correlation function decays with a negative algebraic tail. The exponent depends on the confining geometry, rather than the spatial dimensionality. We can account for the tail by using a simple mode-coupling theory which exploits the fact that the sound wave generated by a moving particle becomes diffusive.
Resumo:
What is the use of representing in performance the image of the cave from book VII of Plato’s Republic? Josep Palau i Fabre considers that in Plato’s dialogues the speakers are mere instruments at the service of his dialectical purpose. The aim of this article is to show how, by turning the myth into a tragedy and relying on Heraclitus’s conflict or war of opposites, the playwright succeeds in favouring a sort of thought which is not one-sided or univocal. On the contrary, in Palau i Fabre’s La Caverna, the tragic hero, the released prisoner transformed by the light of Reality and finally killed by his “cavemates” –after having been imprisoned again and having tried to rescue them from their ignorance or shadows– still leaves them his powerful experience of the agonistikós thought, which might bear fruit in their life to come.