3 resultados para Splice Variants

em Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To assess the spectrum and prevalence of mutations in the GJB2 gene in Portuguese nonsyndromic sensorineural hearing loss (NSSHL) patients. DESIGN: Sequencing of the coding region, basal promoter, exon 1, and donor splice site of the GJB2 gene; screening for the presence of the two common GJB6 deletions. STUDY SAMPLE: A cohort of 264 Portuguese NSSHL patients. RESULTS: At least one out of 21 different GJB2 variants was identified in 80 (30.2%) of the 264 patients analysed. Two mutant alleles were found in 53 (20%) of these probands, of which 83% (44/53) harboured at least one c.35delG allele. Twenty-seven (10.2%) of the probands harboured only one mutant allele. Subsequent analysis revealed that the GJB6 deletion del(GJB6-D13S1854) was present in at least 7.4% (2/27) of the patients carrying only one mutant GJB2 allele. Overall, one in five (55/264) of the patients were diagnosed as having DFNB1-related NSSHL, of which the vast majority (53/55) harboured only GJB2 mutations. CONCLUSIONS: This study provides clear demonstration that mutations in the GJB2 gene are an important cause of NSSHL in Portugal, thus representing a valuable indicator as regards therapeutical and rehabilitation options, as well as genetic counseling of these patients and their families.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To explain the missing heritability after the genome-wide association studies era, sequencing studies allow the identification of low-frequency variants with a stronger effect on disease risk. Common variants in the interleukin 10 gene (IL10) have been consistently associated with Behçet's disease (BD) and the goal of this study is to investigate the role of low-frequency IL10 variants in BD susceptibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1G>C)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5'-UTR of HAMP gene (c.-25G>A). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.