30 resultados para third-order non-linearity
Resumo:
33rd IAHR Congress: Water Engineering for a Sustainable Environment
Resumo:
Nowadays, existing 3D scanning cameras and microscopes in the market use digital or discrete sensors, such as CCDs or CMOS for object detection applications. However, these combined systems are not fast enough for some application scenarios since they require large data processing resources and can be cumbersome. Thereby, there is a clear interest in exploring the possibilities and performances of analogue sensors such as arrays of position sensitive detectors with the final goal of integrating them in 3D scanning cameras or microscopes for object detection purposes. The work performed in this thesis deals with the implementation of prototype systems in order to explore the application of object detection using amorphous silicon position sensors of 32 and 128 lines which were produced in the clean room at CENIMAT-CEMOP. During the first phase of this work, the fabrication and the study of the static and dynamic specifications of the sensors as well as their conditioning in relation to the existing scientific and technological knowledge became a starting point. Subsequently, relevant data acquisition and suitable signal processing electronics were assembled. Various prototypes were developed for the 32 and 128 array PSD sensors. Appropriate optical solutions were integrated to work together with the constructed prototypes, allowing the required experiments to be carried out and allowing the achievement of the results presented in this thesis. All control, data acquisition and 3D rendering platform software was implemented for the existing systems. All these components were combined together to form several integrated systems for the 32 and 128 line PSD 3D sensors. The performance of the 32 PSD array sensor and system was evaluated for machine vision applications such as for example 3D object rendering as well as for microscopy applications such as for example micro object movement detection. Trials were also performed involving the 128 array PSD sensor systems. Sensor channel non-linearities of approximately 4 to 7% were obtained. Overall results obtained show the possibility of using a linear array of 32/128 1D line sensors based on the amorphous silicon technology to render 3D profiles of objects. The system and setup presented allows 3D rendering at high speeds and at high frame rates. The minimum detail or gap that can be detected by the sensor system is approximately 350 μm when using this current setup. It is also possible to render an object in 3D within a scanning angle range of 15º to 85º and identify its real height as a function of the scanning angle and the image displacement distance on the sensor. Simple and not so simple objects, such as a rubber and a plastic fork, can be rendered in 3D properly and accurately also at high resolution, using this sensor and system platform. The nip structure sensor system can detect primary and even derived colors of objects by a proper adjustment of the integration time of the system and by combining white, red, green and blue (RGB) light sources. A mean colorimetric error of 25.7 was obtained. It is also possible to detect the movement of micrometer objects using the 32 PSD sensor system. This kind of setup offers the possibility to detect if a micro object is moving, what are its dimensions and what is its position in two dimensions, even at high speeds. Results show a non-linearity of about 3% and a spatial resolution of < 2µm.
Resumo:
The basic motivation of this work was the integration of biophysical models within the interval constraints framework for decision support. Comparing the major features of biophysical models with the expressive power of the existing interval constraints framework, it was clear that the most important inadequacy was related with the representation of differential equations. System dynamics is often modelled through differential equations but there was no way of expressing a differential equation as a constraint and integrate it within the constraints framework. Consequently, the goal of this work is focussed on the integration of ordinary differential equations within the interval constraints framework, which for this purpose is extended with the new formalism of Constraint Satisfaction Differential Problems. Such framework allows the specification of ordinary differential equations, together with related information, by means of constraints, and provides efficient propagation techniques for pruning the domains of their variables. This enabled the integration of all such information in a single constraint whose variables may subsequently be used in other constraints of the model. The specific method used for pruning its variable domains can then be combined with the pruning methods associated with the other constraints in an overall propagation algorithm for reducing the bounds of all model variables. The application of the constraint propagation algorithm for pruning the variable domains, that is, the enforcement of local-consistency, turned out to be insufficient to support decision in practical problems that include differential equations. The domain pruning achieved is not, in general, sufficient to allow safe decisions and the main reason derives from the non-linearity of the differential equations. Consequently, a complementary goal of this work proposes a new strong consistency criterion, Global Hull-consistency, particularly suited to decision support with differential models, by presenting an adequate trade-of between domain pruning and computational effort. Several alternative algorithms are proposed for enforcing Global Hull-consistency and, due to their complexity, an effort was made to provide implementations able to supply any-time pruning results. Since the consistency criterion is dependent on the existence of canonical solutions, it is proposed a local search approach that can be integrated with constraint propagation in continuous domains and, in particular, with the enforcing algorithms for anticipating the finding of canonical solutions. The last goal of this work is the validation of the approach as an important contribution for the integration of biophysical models within decision support. Consequently, a prototype application that integrated all the proposed extensions to the interval constraints framework is developed and used for solving problems in different biophysical domains.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Signal Processing, vol. 86, nº 10
Resumo:
15th IEEE International Conference on Electronics, Circuits and Systems, Malta
Resumo:
European Master's Degree in Human Rights and Democatisation Academic Year 2008/2009
Resumo:
European Master Human Rights and Democratisation
Resumo:
Dissertação para obtenção do Grau de Mestre em Conservação e Restauro
Resumo:
The last three decades have seen quite dramatic changes the way we modeled time dependent data. Linear processes have been in the center stage in modeling time series. As far as the second order properties are concerned, the theory and the methodology are very adequate.However, there are more and more evidences that linear models are not sufficiently flexible and rich enough for modeling purposes and that failure to account for non-linearities can be very misleading and have undesired consequences.
Resumo:
Dissertation presented to obtain the PhD degree in Biology
Resumo:
Dissertação Apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Ciências da Conservação, especialização em Pintura
Resumo:
ABSTRACT - It is the purpose of the present thesis to emphasize, through a series of examples, the need and value of appropriate pre-analysis of the impact of health care regulation. Specifically, the thesis presents three papers on the theme of regulation in different aspects of health care provision and financing. The first two consist of economic analyses of the impact of health care regulation and the third comprises the creation of an instrument for supporting economic analysis of health care regulation, namely in the field of evaluation of health care programs. The first paper develops a model of health plan competition and pricing in order to understand the dynamics of health plan entry and exit in the presence of switching costs and alternative health premium payment systems. We build an explicit model of death spirals, in which profitmaximizing competing health plans find it optimal to adopt a pattern of increasing relative prices culminating in health plan exit. We find the steady-state numerical solution for the price sequence and the plan’s optimal length of life through simulation and do some comparative statics. This allows us to show that using risk adjusted premiums and imposing price floors are effective at reducing death spirals and switching costs, while having employees pay a fixed share of the premium enhances death spirals and increases switching costs. Price regulation of pharmaceuticals is one of the cost control measures adopted by the Portuguese government, as in many European countries. When such regulation decreases the products’ real price over time, it may create an incentive for product turnover. Using panel data for the period of 1997 through 2003 on drug packages sold in Portuguese pharmacies, the second paper addresses the question of whether price control policies create an incentive for product withdrawal. Our work builds the product survival literature by accounting for unobservable product characteristics and heterogeneity among consumers when constructing quality, price control and competition indexes. These indexes are then used as covariates in a Cox proportional hazard model. We find that, indeed, price control measures increase the probability of exit, and that such effect is not verified in OTC market where no such price regulation measures exist. We also find quality to have a significant positive impact on product survival. In the third paper, we develop a microsimulation discrete events model (MSDEM) for costeffectiveness analysis of Human Immunodeficiency Virus treatment, simulating individual paths from antiretroviral therapy (ART) initiation to death. Four driving forces determine the course of events: CD4+ cell count, viral load resistance and adherence. A novel feature of the model with respect to the previous MSDEMs is that distributions of time to event depend on individuals’ characteristics and past history. Time to event was modeled using parametric survival analysis. Events modeled include: viral suppression, regimen switch due virological failure, regimen switch due to other reasons, resistance development, hospitalization, AIDS events, and death. Disease progression is structured according to therapy lines and the model is parameterized with cohort Portuguese observational data. An application of the model is presented comparing the cost-effectiveness ART initiation with two nucleoside analogue reverse transcriptase inhibitors (NRTI) plus one non-nucleoside reverse transcriptase inhibitor(NNRTI) to two NRTI plus boosted protease inhibitor (PI/r) in HIV- 1 infected individuals. We find 2NRTI+NNRTI to be a dominant strategy. Results predicted by the model reproduce those of the data used for parameterization and are in line with those published in the literature.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics