11 resultados para site-specific mutagenesis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Febs Journal (2009)276:1776-1786

Relevância:

80.00% 80.00%

Publicador:

Resumo:

FEBS journal, Volume 278, Issue 14, pages 2511-2524, July 2011

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Para a obtenção do Grau de Mestre em Energia e Bioenergia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioquímica, ramo de Biotecnologia

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trabalho de projecto apresentado para cumprimento dos requisitos necessários à obtenção do grau Mestre em Ciências da Comunicação na especialização de Comunicação e Artes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chlamydia trachomatis has a unique obligate intracellular developmental cycle that ends by the lysis of the cell and/or the extrusion of the bacteria in order to allow for re-infections. While Chlamydia trachomatis infections are often asymptomatic the diagnosis of Chlamydia trachomatis is usually late, occurring after manifestation of persistency. Investigations on the consequences of long-term infections and the molecular mechanisms behind it will reveal light to what extent bacteria can modulate host cell function and what the ultimate fate of host cells after clearance of an infection is. Such studies on the host cell fate could be greatly facilitated if the infected cells become permanently marked during and after the infection. Therefore, this project intends to develop a new genetic tool that would allow permanently labeling of Chlamydia trachomatis host cells. The plan was to generate a Chlamydia trachomatis strain that encodes a recombinant CRE recombinase, fused to a secretory effector function of the Chlamydia type 3 secretion system (T3SS). Upon translocation into the host cell, this recombinant CRE enzyme could then, owing to its site-specific recombination function, switch a reporter gene contained in the host cell genome. To this end, the reporter line carried a membrane-tagged tdTomato (mT) gene flanked by two LoxP sequences followed by a GFP gene. The translocation of the recombinant CRE recombinase into this cell line was designed to trigger the recombination of the LoxP sites whereby the cells would turn from red fluorescence to green as an irreversible label of the infected cells. Successful execution of this mechanism would allow to draw a direct link between Chlamydia trachomatis infection and the subsequent fate of the infected cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Bioquímica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolise several related secondary metabolites requires regulation at the genetic level. Here, by site- directed mutagenesis, we show that AraL production is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of HAD subfamily IIA and IIB are characterised by a broad-range and overlapping specificity that anticipated the need for regulation at the genetic level. In this study we provide evidence for the existence of a genetic regulatory mechanism controlling AraL production.