7 resultados para proliferative phase
Resumo:
RESUMO:A determinação da fracção exalada de óxido nítrico (FENO) é amplamente utilizada como um biomarcador da inflamação eosinofílica das vias aéreas. Alguns estudos sugerem que a produção de óxido nítrico (NO) é influenciada pelas variações cíclicas hormonais na mulher,porém os dados não são consensuais. Deste modo, o objectivo do nosso estudo foi avaliar como varia a FENO ao longo do ciclo menstrual. Com esta finalidade, avaliamos um grupo de 20 voluntárias, em idade fértil, com ciclo menstrual regular, não fumadoras, que não utilizavam contraceptivos hormonais, nem suplementos alimentares e/ou medicamentosos e que não se encontravam grávidas, nem a amamentar. Todas referiram não ter conhecimento de qualquer patologia que afecte a FENO. A existência de atopia foi controlada através de testes cutâneos por prick, tendo-se excluído as participantes que apresentaram testes positivos. Realizamos quatro visitas de estudo, com base na periodicidade do ciclo de cada participante, nas quais, efectuamos a determinação da FENO, a quantificação dos níveis plasmáticos de óxido nítrico e nitratos (NO/NO3 -) e o doseamento hormonal de 17 -estradiol e progesterona. As avaliações realizaram-se no período da manhã, em jejum absoluto, tendo respeitado uma dieta pobre em nitratos no dia anterior e abstido da prática de exercício vigoroso uma hora antes da avaliação. Com este trabalho, verificamos um aumento significativo da FENO na fase secretora (17.97 ppb ± 5.8) comparativamente com a fase menstrual e proliferativa (16.48 ppb ± 3.6 e 15.95 ppb ±2.8, respectivamente). Não observamos variações significativas dos níveis plasmáticos de NO/NO3 - ao longo do ciclo. Constatamos uma correlação positiva entre a FENO e os níveis plasmáticos de NO/NO3 - durante a ovulação e verificamos que, para a nossa amostra, os níveis hormonais de estradiol e progesterona não são preditores do valor da FENO, nem dos níveis plasmáticos de NO/NO3-. Os resultados deste trabalho mostram uma variação da FENO ao longo do ciclo, ainda assim, mantendo-se os seus valores dentro do intervalo de referência, reforçando a fiabilidade deste biomarcador.--ABSTRACT:The determination of fractional exhaled nitric oxide (FENO) is widely used as a biomarker of eosinophilic airway inflammation. Some studies suggest that nitric oxide (NO) is influenced by cyclical hormonal changes in women, but those are not consensual. The aim of our study was to assess how FENO varies throughout the menstrual cycle. With this purpose, we studied a group of 20 volunteers within childbearing age, with regular menstrual cycle, non-smokers, who were not taking any medications including hormonal contraception and food supplements and who were not pregnant or breast-feeding. All participants reported not being aware of any condition that could affect the FENO. The presence of atopy was controlled by a skin prick test, having been excluded participants with positive test. We conducted four study visits, based on the periodicity of the cycle of each participant. In each visit, we made the determination of the FENO, the quantification of plasmatic levels of nitric oxide and nitrates (NO/NO3 -) and the blood levels of hormone estradiol-17 and progesterone. The evaluations occurred at morning, after overnight fasting. The participants were request to follow a low-nitrate diet in the previous day and refrained from vigorous exercise, for at least one hour before the visit We found a significant increase of FENO on secretory phase (17.97 ppb ± 5.8) compared with the menstrual and proliferative phase (16.48 ppb ± 3.6 and 15.95 ppb ± 2.8, espectively). No significant variations were found throughout the menstrual cycle in plasmatic levels of NO/NO3 -. We found a positive correlation between FENO and plasmatic levels of NO/NO3 - during ovulation. Finally, in our sample, the levels of oestradiol and progesterone are not predictors of FENO value nor of plasmatic levels of NO/NO3-. This study shows a variation of FENO over the menstrual cycle, nevertheless, the values remain within the reference range, reinforcing the reliability of this biomarker.
Resumo:
The WORKS Project started two years ago (2005), involving the efforts of research institutes of 13 European countries with the main purpose of improving the understanding of the major changes in work in the knowledge-based society, taking account both of global forces and the regional diversity within Europe. This research meeting in Sofia (Bulgaria) aimed to present synthetically the massive amount of data collected in the case studies (occupational and organisational) and with the quantitative research during last year.
Resumo:
Pine forests constitute some of the most important renewable resources supplying timber, paper and chemical industries, among other functions. Characterization of the volatiles emitted by different Pinus species has proven to be an important tool to decode the process of host tree selection by herbivore insects, some of which cause serious economic damage to pines. Variations in the relative composition of the bouquet of semiochemicals are responsible for the outcome of different biological processes, such as mate finding, egg-laying site recognition and host selection. The volatiles present in phloem samples of four pine species, P. halepensis, P. sylvestris, P. pinaster and P. pinea, were identified and characterized with the aim of finding possible host-plant attractants for native pests, such as the bark beetle Tomicus piniperda. The volatile compounds emitted by phloem samples of pines were extracted by headspace solid-phase micro extraction, using a 2 cm 50/30 mm divinylbenzene/carboxen/polydimethylsiloxane table flex solid-phase microextraction fiber and its contents analyzed by high-resolution gas chromatography, using flame ionization and a non polar and chiral column phases. The components of the volatile fraction emitted by the phloem samples were identified by mass spectrometry using time-of-flight and quadrupole mass analyzers. The estimated relative composition was used to perform a discriminant analysis among pine species, by means of cluster and principal component analysis. It can be concluded that it is possible to discriminate pine species based on the monoterpenes emissions of phloem samples.
Resumo:
Thesis submitted in Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa for the degree of Master in Materials Engineering
Resumo:
Dissertation presented to obtain the Ph.D. degree in Chemistry (Physical Chemistry) at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
The evolution of receiver architectures, built in modern CMOS technologies, allows the design of high efficient receivers. A key block in modern receivers is the oscillator. The main objective of this thesis is to design a very low power and low area 8-Phase Ring Oscillator for biomedical applications (ISM and WMTS bands). Oscillators with multiphase outputs and variable duty cycles are required. In this thesis we are focused in 12.5% and 50% duty-cycles approaches. The proposed circuit uses eight inverters in a ring structure, in order to generate the output duty cycle of 50%. The duty cycle of 1/8 is achieved through the combination of the longer duty cycle signals in pairs, using, for this purpose, NAND gates. Since the general application are not only the wireless communications context, as well as industrial, scientific and medical plans, the 8-Phase Oscillator is simulated to be wideband between 100 MHz and 1 GHz, and be able to operate in the ISM bands (447 MHz-930 MHz) and WMTS (600 MHz). The circuit prototype is designed in UMC 130 nm CMOS technology. The maximum value of current drawn from a DC power source of 1.2 V, at a maximum frequency of 930 MHz achieved, is 17.54 mA. After completion of the oscillator layout studied (occupied area is 165 μm x 83 μm). Measurement results confirm the expected operating range from the simulations, and therefore, that the oscillator fulfil effectively the goals initially proposed in order to be used as Local Oscillator in RF Modern Receivers.