14 resultados para planets and satellites: dynamical evolution and stability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Febs Journal (2009)276:1776-1786

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain a PhD degree in Biochemistry at Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper assesses empirically the effect of oil price shocks on Portuguese aggregate economic activity, industrial production and price level. We take the usual multivariate VAR methodology to investigate the magnitude and stability of this relationship. In doing so, we follow the approach presented in the recent literature and adopt different oil price specifications. We conclude that, as for most industrialized countries, the nature of this relationship changed in the mid-1980s. Furthermore, we show that the main Portuguese macroeconomic variables have become progressively less responsive to oil shocks and the adjustment towards equilibrium has become increasingly faster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a family of models with Physical, Human capital and R&D for which convergence properties have been discussed (Arnold, 2000a; Gómez, 2005). However, spillovers in R&D have been ignored in this context. We introduce spillovers in this model and derive its steady-state and stability properties. This new feature implies that the model is characterized by a system of four differential equations. A unique Balanced Growth Path along with a two dimensional stable manifold are obtained under simple and reasonable conditions. Transition is oscillatory toward the steady-state for plausible values of parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembly is a phenomenon that occurs frequently throughout the universe. In this work, two self-assembling systems were studied: the formation of reverse micelles in isooctane and in supercritical CO2 (scCO2), and the formation of gels in organic solvents. The goal was the physicochemical study of these systems and the development of an NMR methodology to study them. In this work, AOT was used as a model molecule both to comprehensively study a widely researched system water/AOT/isooctane at different water concentrations and to assess its aggregation in supercritical carbon dioxide at different pressures. In order to do so an NMR methodology was devised, in which it was possible to accurately determine hydrodynamic radius of the micelle (in agreement with DLS measurements) using diffusion ordered spectroscopy (DOSY), the micellar stability and its dynamics. This was mostly assessed by 1H NMR relaxation studies, which allowed to determine correlation times and size of correlating water molecules, which are in agreement with the size of the shell that interacts with the micellar layer. The encapsulation of differently-sized carbohydrates was also studied and allowed to understand the dynamics and stability of the aggregates in such conditions. A W/CO2 microemulsion was prepared using AOT and water in scCO2, with ethanol as cosurfactant. The behaviour of the components of the system at different pressures was assessed and it is likely that above 130 bar reverse microemulsions were achieved. The homogeneity of the system was also determined by NMR. The formation of the gel network by two small molecular organogelators in toluene-d8 was studied by DOSY. A methodology using One-shot DOSY to perform the spectra was designed and applied with success. This yielded an understanding about the role of the solvent and gelator in the aggregation process, as an estimation of the time of gelation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thrust towards energy conservation and reduced environmental footprint has fueled intensive research for alternative low cost sources of renewable energy. Organic photovoltaic cells (OPVs), with their low fabrication costs, easy processing and flexibility, represent a possible viable alternative. Perylene diimides (PDIs) are promising electron-acceptor candidates for bulk heterojunction (BHJ) OPVs, as they combine higher absorption and stability with tunable material properties, such as solubility and position of the lowest unoccupied molecular orbital (LUMO) level. A prerequisite for trap free electron transport is for the LUMO to be located at a level deeper than 3.7 eV since electron trapping in organic semiconductors is universal and dominated by a trap level located at 3.6 eV. Although the mostly used fullerene acceptors in polymer:fullerene solar cells feature trap-free electron transport, low optical absorption of fullerene derivatives limits maximum attainable efficiency. In this thesis, we try to get a better understanding of the electronic properties of PDIs, with a focus on charge carrier transport characteristics and the effect of different processing conditions such as annealing temperature and top contact (cathode) material. We report on a commercially available PDI and three PDI derivatives as acceptor materials, and its blends with MEH-PPV (Poly[2-methoxy 5-(2-ethylhexyloxy)-1,4-phenylenevinylene]) and P3HT (Poly(3-hexylthiophene-2,5-diyl)) donor materials in single carrier devices (electron-only and hole-only) and in solar cells. Space-charge limited current measurements and modelling of temperature dependent J-V characteristics confirmed that the electron transport is essentially trap-free in such materials. Different blend ratios of P3HT:PDI-1 (1:1) and (1:3) show increase in the device performance with increasing PDI-1 ratio. Furthermore, thermal annealing of the devices have a significant effect in the solar cells that decreases open-circuit voltage (Voc) and fill factor FF, but increases short-circuit current (Jsc) and overall device performance. Morphological studies show that over-aggregation in traditional donor:PDI blend systems is still a big problem, which hinders charge carrier transport and performance in solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Journal of Proteome Research (2006)5: 2720-2726

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The European Union has taken in recent years an increasingly important role in ensuring peace and stability in the international community, and the security and defence policy of the Union has become synonymous with crisis management. The Union has addressed the issue of crisis management through two sources: the military side and the civilian side, which consists in carrying out numerous crisis management operations and missions. This study discusses the role of the European Union in conducting crisis management operations and missions and how the gendarmerie forces contribute to the success of the same. It will discuss the evolution of the European Union's security policy and the concept of crisis management, and seek to demonstrate the added value of the commitment of gendarmerie forces in operations and missions of crisis management, particularly with regard to employment of the European Gendarmerie Force. On the other hand, it will study the planning process for crisis management of the European Union, featuring the entities and agencies involved in it, and presenting the products that result from this same process. The use of Gendarmerie forces in crisis management operations and missions has significant advantages. Its use is recommended to post - conflict scenarios, in complementarity with the armed forces, in order to overcome the "security gap" that mediates the transition from the state of conflict for the period of peace and reconstruction. Gendarmerie forces can also be engaged both in military crisis management operations and civilian crisis management missions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The focus of this Thesis was the study of the sensor domains of two heme-containing methyl-accepting chemotaxis proteins (MCP) from Geobacter sulfurreducens: GSU0582 and GSU0935. These domains contain one c-type heme, form swapped dimers with a PAS-like fold and are the first examples of a new class of heme sensors. NMR spectroscopy was used to assign the heme and polypeptide signals in both sensors, as a first step to probe conformational changes in the vicinity of the hemes. However, the presence of two conformations in solution impaired the confident assignment of the polypeptide signals. To understand how conformational changes and swapped dimerization mechanism can effectively modulate the function of the two sensor domains and their signal transduction process, the sensor domains folding and stability were studied by circular dichroism and UV-visible spectroscopy. The results showed differences in the thermodynamic stability of the sensors, with GSU0582 displaying higher structural stability. These studies also demonstrated that the heme moiety undergoes conformational changes matching those occurring at the global protein structure and that the content of intrinsically disordered segments within these proteins (25% for GSU0935; 13% for GSU0582) correlates with the stability differences observed. The thermodynamic and kinetic properties of the sensor domains were determined at different pH and ionic strength by visible spectroscopy and stopped-flow techniques. Despite the remarkably similar spectroscopic and structural features of the two sensor domains, the results showed that their properties are quite distinct. Sensor domain GSU0935 displayed more negative reduction potentials and smaller reduction rate constants, which were more affected by pH and ionic strength. The available structures were used to rationalize these differences. Overall, the results described in this Thesis indicate that the two G. sulfurreducens MCP sensor domains are designed to function in different working potential ranges, allowing this bacterium to trigger an adequate cellular response in distinct anoxic subsurface environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report presents a case study to be used in courses of negotiation in masters and executive programs. The case studies the topics of the coalitions´ formation and stability from a negotiation analysis perspective, linking it to value creation. Moreover, it illustrates the problem of western companies investing in the Chinese market. The methodology utilized was the construction of a negotiation case, inspired by a real negotiation in the Consumer Electronics industry. Its purpose is to illustrate the value creation problems in coalitions. It is concluded that by maximizing value creation, negotiating parties are more likely to obtain stable coalitions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ionic Liquids (ILs) consist in organic salts that are liquid at/or near room temperature. Since ILs are entirely composed of ions, the formation of ion pairs is expected to be one essential feature for describing solvation in ILs. In recent years, protein - ionic liquid (P-IL) interactions have been the subject of intensive studies mainly because of their capability to promote folding/unfolding of proteins. However, the ion pairs and their lifetimes in ILs in P-IL thematic is dismissed, since the action of ILs is therefore the result of a subtle equilibrium between anion-cation interaction, ion-solvent and ion-protein interaction. The work developed in this thesis innovates in this thematic, once the design of ILs for protein stabilisation was bio-inspired in the high concentration of organic charged metabolites found in cell milieu. Although this perception is overlooked, those combined concentrations have been estimated to be ~300 mM among the macromolecules at concentrations exceeding 300 g/L (macromolecular crowding) and transient ion-pair can naturally occur with a potential specific biological role. Hence the main objective of this work is to develop new bio-ILs with a detectable ion-pair and understand its effects on protein structure and stability, under crowding environment, using advanced NMR techniques and calorimetric techniques. The choline-glutamate ([Ch][Glu]) IL was synthesized and characterized. The ion-pair was detected in water solutions using mainly the selective NOE NMR technique. Through the same technique, it was possible to detect a similar ion-pair promotion under synthetic and natural crowding environments. Using NMR spectroscopy (protein diffusion, HSQC experiments, and hydrogen-deuterium exchange) and differential scanning calorimetry (DSC), the model protein GB1 (production and purification in isotopic enrichment media) it was studied in the presence of [Ch][Glu] under macromolecular crowding conditions (PEG, BSA, lysozyme). Under dilute condition, it is possible to assert that the [Ch][Glu] induces a preferential hydration by weak and non-specific interactions, which leads to a significant stabilisation. On the other hand, under crowding environment, the [Ch][Glu] ion pair is promoted, destabilising the protein by favourable weak hydrophobic interactions , which disrupt the hydration layer of the protein. However, this capability can mitigates the effect of protein crowders. Overall, this work explored the ion-pair existence and its consequences on proteins in conditions similar to cell milieu. In this way, the charged metabolites found in cell can be understood as key for protein stabilisation.