13 resultados para azido-cyclopalladated compounds
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química e Bioquímica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
RESUMO: Sessenta e três derivados de hidantoína foram utilizados para avaliar possíveis efeitos de modulação na actividade das bombas de efluxo (BE) na Salmonella NCTC 13349 utilizando um método fluorimétrico semi-automático. Nenhum dos compostos apresentaram actividade anti-bacteriana até concentrações de 240 mg/L. Entre todos os compostos, SZ-7 demonstrou possuir propriedades de modulação de effluxo na presença de glucose. Para testar esta actividade, estirpes de Salmonella resistentes à ciprofloxacina, induzidas a elevados níveis de resistência com sobre-expressão de BE, foram expostas ao SZ-7. Este derivado afectou a susceptibilidade das estirpes à ciprofloxacina. Uma vez que os 63 compostos estudados apresentaram pouco efeito inibitório /cumulativo, apesar de serem conhecidos pelos seus efeitos moduladores de BE-dependentes de iões em eucariotas, foi questionado o papel dos iões na regulação de BE bacterianas, que poderão influenciar a eficácia de novos compostos. Para este estudo, utilizamos a Escherichia coli AG100 como modelo, devido ao extenso conhecimento no que respeita a estrutura e actividade das BE. Devido à importância de iões de cálcio (Ca2+) nos canais de transporte membranar e na actividade de ATPases, a sua actividade na modulação do efluxo foi investigada. De resultados anteriormente obtidos concluiu-se que a pH 5 o efluxo é independente de energia metabólica; contudo, a pH 8 é absolutamente dependente, sendo que o Ca2+ é indispensável para manter a actividade das ATPases bacterianas. A acumulação/effluxo de EtBr pela E. coli AG100 foi determinada na presença/ausência de Ca2+, clorpromazina (inibidor de ligação de Ca2+ a proteínas), e ácido etilenodiamino tetra-acético (quelante de Ca2+). Acumulação/effluxo aumentou a pH 8, contudo o Ca2+ reverte estes efeitos evidenciando a sua importância no funcionamento das BE bacterianas. Em resumo este trabalho colocou em evidência que muitos aspectos bioquímicos e bioenergéticos devem ser tomados em consideração no estudo da resistência bacteriana mediada por BE.------- ABSTRACT: Sixty-three hydantoin derivatives were evaluated for their modulating effects on efflux pump (EP) activity of Salmonella NCTC 13349 utilizing a semi-automatic fluorometric method. None of the compounds presented antibacterial activities at concentrations as high as 240 mg/L. Among all compounds, SZ-7 showed possible efflux modulating activity in the presence of glucose, indicative of a potential EP inhibitor. To verify its potential effects, ciprofloxacin-resistant Salmonella strains, induced to high level resistance with over-expressing EPs, were exposed to SZ-7. This derivative affected the susceptibility of the ciprofloxacin-resistant strains. Since the 63 compounds studied had very low inhibitory/accumulative effects, even though their known for being efficient in modulating ion-driven eukaryotic EPs, we questioned whether ions had a leading role in regulating bacterial EPs, influencing the effectiveness of new compounds. For this study we used Escherichia coli AG100 as a model, due to the extensive knowledge on its EPs structure and activity. Owing the importance of calcium ions (Ca2+) for membrane transport channels and activity of ATPases, the role of Ca2+ was investigated. From previous results we concluded that at pH 5 efflux is independent of metabolic energy; however, at pH 8 it is entirely dependent of metabolic energy and the Ca2+ ions are essential to maintain the activity of bacterial ATPases. Accumulation and efflux of ethidium bromide (EtBr) by E. coli AG100 was determined in the presence and absence of Ca2+, chlorpromazine (inhibitor of Ca2+-binding to proteins), and ethylenediaminetetraacetic acid (Ca2+ chelator). Accumulation of EtBr increased at pH 8; however Ca2+ reversed these effects providing information as to the importance of this ion in the regulation of bacterial EP systems. Overall this work puts in evidence that many biochemical and bioenergetic aspects related to the strains physiology need to be taken into consideration in bacterial drug resistance mediated by EPs.
Resumo:
Inorg Chem. 2008 Jul 7;47(13):5677-84. doi: 10.1021/ic702405d
Resumo:
Dissertation to obtain the degree of master in Chemical and Biochemical Engineering
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Dissertation for the Master Degree in Technology and Food Security
Resumo:
Dissertação para a obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Due to their toxicity, especially their carcinogenic potential, polycyclic aromatic hydrocarbons (PAHs) became priority pollutants in biomonitoring programmes and environmental policy, such as the European Water Framework Directive. The model substances tested in this study, namely benzo[b]fluoranthene (B[b]F), considered potentially carcinogenic to humans and an effector carcinogenic PAH to wildlife, and phenanthrene (Phe), deemed a non-carcinogenic PAH, are common PAHs in coastal waters, owning distinct properties reflected in different, albeit overlapping, mechanisms of toxicity. Still, as for similar PAHs, their interaction effects remain largely unknown. In order to study the genotoxic effects of caused by the interaction of carcinogenic and non-carcinogenic PAHs, and their relation to histopathological alterations, juvenile sea basses, Dicentrarchus labrax, a highly ecologically- and economically-relevant marine fish, were injected with different doses (5 and 10 μg.g-1 fish ww) of the two PAHs, isolated or in mixture, and incubated for 48 h. Individuals injected with B[b]F and the PAH mixture exhibited higher clastogenic/aneugenic effects and DNA strand breakage in blood cells, determined through the erythrocytic nuclear abnormalities (ENA) and Comet assays, respectively. Also, hepatic histopathological alterations were found in all animals, especially those injected with B[b]F and the PAH mixture, relating especially to inflammation. Still, Phe also exhibited genotoxic effects in sea bass, especially in higher doses, revealing a very significant acute effect that was accordant with the Microtox test performed undergone in parallel. Overall, sea bass was sensitive to B[b]F (a higher molecular weight PAH), likely due to efficient bioactivation of the pollutant (yielding genotoxic metabolites and reactive oxygen species), when compared to Phe, the latter revealing a more significant acute effect. The results indicate no significant additive effect between the substances, under the current experimental conditions. The present study highlights the importance of understanding PAH interactions in aquatic organisms, since they are usually present in the aquatic environment in complex mixtures.
Resumo:
My master studies have resulted in the following publication: Martins P, Rosa D, Fernandes AR, Baptista PV. 2014. Nanoparticle Drug Delivery Systems: Recent Patents and Applications in Nanomedicine. Recent Patents in Nanomedicine. 3(2):105-118.
Resumo:
Review article Martins, P., Marques, M., Coito, L., Pombeiro, A.J.L., Baptista, P.V., Fernandes, A.R. 2014. Organometallic Compounds in Cancer Therapy: Past Lessons and Future Directions. Anti-cancer Agents in Medicinal Chemistry 14. PMID: 25173559
Resumo:
Micro/nano wrinkled patterns on cross-linked urethane/urea polymeric flexible free standing films with two soft segments, polypropylene oxide and polybutadiene, can be induced by UV-irradiation. The ability to write/erase these 3D structures, in a controlled manner, is the main focus of this work. The imprinting of the wrinkled structures was accomplished by swelling in an appropriate solvent followed by drying the membranes after the cross-linking process and UV irradiation. The surface tailoring of the elastomeric membranes was imaged by optical microscopy, scanning electronic microscopy and by atomic force microscopy. To erase the wrinkled structures the elastomers were swollen. The swelling as well as the sol/gel fraction and the UV radiation were tuned in order to control the wrinkles characteristics. It was found that the wrinkles wavelength, in the order of microns (1±0,25μm), was stamped by the UV radiation intensity and exposure time while the wrinkles' amplitude, in the order of nanometers (150-450 nm), was highly dependent on the swelling and sol/gel fraction. A prototype for volatile organic compounds detection was developed taking advantage of the unique 3D micro/nano wrinkles features.