18 resultados para TiO2 thin film
Resumo:
Advanced Materials, Vol. 17, nº 5
Resumo:
Thin Solid Films, vol. 427, nº 1-2
Resumo:
In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Nanotechnologies and Nanosciences by Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia
Resumo:
Dissertação para obtenção do Grau de Doutor em Nanotecnologia e Nanociência
Resumo:
Nature has developed strategies to present us with a wide variety of colours, from the green of leaves to the bright colours seen in flowers. Anthocyanins are between these natural pigments that are responsible for the great diversity of colours seen in flowers and fruits. Anthocyanins have been used to sensitize titanium dioxide (TiO2) in Dye-Sensitized Solar Cells (DSSCs). DSSCs have become one of the most popular research topic in photovoltaic cells due to their low production costs when compared to other alternatives. DSSCs are inspired in what happens in nature during photosynthesis. A primary charge separation is achieved by means of a photoexcited dye capable of performing the electron injection into the conduction band of a wide band-gap semiconductor, usually TiO2. With this work we aimed to synthesize a novel mesoporous TiO2 structure as the semiconductor in order to increase the dye loading. We used natural occurring dyes such as anthocyanins and their synthetic flavylium relatives, as an alternative to the widely used metal complexes of Ru(II) which are expensive and are environmentally unsafe. This offers not only the chance to use safer dyes for DSSCs, but also to take profit of waste biological products, such as wine and olive oil production residues that are heavily loaded with anthocyanin dyes. We also performed a photodegradation study using TiO2 as the catalyst to degrade dye contaminants, such as those from the wine production waste, by photo-irradiation of the system in the visible region of the light spectrum. We were able to succeed in the synthesis of mesoporous TiO2 both powder and thin film, with a high capacity to load a large amount of dye. We proved the concept of photodegradation using TiO2 as catalyst. And finally, we show that wine production waste is a possible dye source to DSSCs application.
Resumo:
Vacuum, Vol. 64
Resumo:
The quasi two-dimensional electron gas (q2DEG) hosted in the interface of an epitaxially grown lanthanum aluminate (LaAlO3) thin film with a TiO2-termi-nated strontium titanate (SrTiO3) substrate (001) has been massively studied in the last few years. The confinement of mobile electrons to within a few nanome-ters from the interface, superconductive behavior at low temperatures and elec-tron mobility exceeding 1000 cm2/(V.s) make this system an interesting candi-date to explore the physics of spin injection and transport. However, due to the critical thickness for conduction of 4 unit cells (uc) of LaAlO3, a high tunneling resistance hampers electrical access to the q2DEG, preventing proper injection of spin polarized current. Recently, our group found that depositing a thin overlayer of Co on LaAlO3 reduces the critical thickness, enabling conduction with only 1 uc of LaAlO3. Two scenarios arise to explain this phenomenon: a pinning of the Fermi level in the metal, inducing charge transfer in the SrTiO3; the creation of oxygen vacancies at the interface between LaAlO3 and the metal, leading to an n-type doping of the SrTiO3. In this dissertation, we will report on magnetotransport of metal/LaAlO3/SrTiO3 (metal: Ti, Ta, Co, Py, Au, Pt, Pd) heterostructures with 2 uc of LaAlO3 studied at low temperatures (2 K) and high magnetic fields (9 T). We have analyzed the transport properties of the gas, namely, the carrier concen-tration, mobility and magnetotransport regime and we will discuss the results in the light of the two scenarios mentioned above.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia dos Materiais, especialidade Microelectrónica e Optoelectrónica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
IEEE Electron Device Letters, VOL. 29, NO. 9,
Resumo:
Journal of Applied Physics, Vol. 96, nº3
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia dos Materiais, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The impact of microbial activity on the deterioration of cultural heritage is a well-recognized global problem. Glazed wall tiles constitute an important part of the worldwide cultural heritage. When exposed outdoors, biological colonization and consequently biodeterioration may occur. Few studies have dealt with this issue, as shown in the literature review on biodiversity, biodeterioration and bioreceptivity of architectural ceramic materials. Due to the lack of knowledge on the biodeteriogens affecting these assets, the characterization of microbial communities growing on Portuguese majolica glazed tiles, from Pena National Palace (Sintra, Portugal) and another from Casa da Pesca (Oeiras, Portugal) was carried out by culture and molecular biology techniques. Microbial communities were composed of microalgae, cyanobacteria, bacteria and fungi, including a new fungal species (Devriesia imbrexigena) described for the first time. Laboratory-based colonization experiments were performed to assess the biodeterioration patterns and bioreceptivity of glazed wall tiles produced in laboratory. Microorganisms previously identified on glazed tiles were inoculated on pristine and artificially aged tile models and incubated under laboratory conditions for 12 months. Phototrophic microorganisms were able to grow into glaze fissures and the tested fungus was able to form oxalates over the glaze. The bioreceptivity of artificially aged tiles was higher for phototrophic microorganisms than pristine tile models. A preliminary approach on mitigation strategies based on in situ application of commercial biocides and titanium dioxide (TiO2) nanoparticles on glazed tiles demonstrated that commercial biocides did not provide long term protection. In contrast, TiO2 treatment caused biofilm detachment. In addition, the use of TiO2 thin films on glazed wall tiles as a protective coating to prevent biological colonization was analysed under laboratorial conditions. Finally, conservation notes on tiles exposed to biological colonization were presented.
Resumo:
Understanding how the brain works has been one of the greatest goals of mankind. This desire fuels the scientific community to pursue novel techniques able to acquire the complex information produced by the brain at any given moment. The Electrocorticography (ECoG) is one of those techniques. By placing conductive electrodes over the dura, or directly over the cortex, and measuring the electric potential variation, one can acquire information regarding the activation of those areas. In this work, transparent ECoGs, (TrECoGs) are fabricated through thin film deposition of the Transparent Conductive Oxides (TCOs) Indium-Zinc-Oxide (IZO) and Gallium-Zinc-Oxide (GZO). Five distinct devices have been fabricated via shadow masking and photolithography. The data acquired and presented in this work validates the TrECoGs fabricated as efficient devices for recording brain activity. The best results were obtained for the GZO- based TrECoG, which presented an average impedance of 36 kΩ at 1 kHz for 500 μm diameter electrodes, a transmittance close to 90% for the visible spectrum and a clear capability to detect brain signal variations. The IZO based devices also presented high transmittance levels (90%), but with higher impedances, which ranged from 40 kΩ to 100 kΩ.