34 resultados para Thermo-mechanical Theory
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Conservação e Restauro, especialidade Ciências da Conservação, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Doutor em Engenharia Civil
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
This work presents the archaeometallurgical study of a group of metallic artefacts found in Moinhos de Golas site, Vila Real (North of Portugal), that can generically be attributed to Proto-history (1st millennium BC, Late Bronze Age and Iron Age). The collection is composed by 35 objects: weapons, ornaments and tools, and others of difficult classification, as rings, bars and one small thin bent sheet. Some of the objects can typologically be attributed to Late Bronze Age, others are of more difficult specific attribution. The archaeometallurgical study involved x-ray digital radiography, elemental analysis by micro-energy dispersive X-ray fluorescence spectrometry and scanning electron microscopy with energy dispersive spectroscopy, microstructural observations by optical microscopy and scanning electron microscopy. The radiographic images revealed structural heterogeneities frequently related with the degradation of some artefacts and the elemental analysis showed that the majority of the artefacts was produced in a binary bronze alloy (Cu-Sn) (73%), being others produced in copper (15%) and three artefacts in brass (Cu-Zn(-Sn-Pb)). Among each type of alloy there’s certain variability in the composition and in the type of inclusions. The microstructural observations revealed that the majority of the artefacts suffered cycles of thermo-mechanical processing after casting. The diversity of metals/alloys identified was a discovery of great interest, specifically due to the presence of brasses. Their presence can be interpreted as importations related to the circulation of exogenous products during the Proto-history and/or to the deposition of materials during different moments at the site, from the transition of Late Bronze Age/Early Iron Age (Orientalizing period) onwards, as during the Roman period.
Resumo:
One of the biggest challenges for humanity is global warming and consequently, climate changes. Even though there has been increasing public awareness and investments from numerous countries concerning renewable energies, fossil fuels are and will continue to be in the near future, the main source of energy. Carbon capture and storage (CCS) is believed to be a serious measure to mitigate CO2 concentration. CCS briefly consists of capturing CO2 from the atmosphere or stationary emission sources and transporting and storing it via mineral carbonation, in oceans or geological media. The latter is referred to as carbon capture and geological storage (CCGS) and is considered to be the most promising of all solutions. Generally it consists of a storage (e.g. depleted oil reservoirs and deep saline aquifers) and sealing (commonly termed caprock in the oil industry) formations. The present study concerns the injection of CO2 into deep aquifers and regardless injection conditions, temperature gradients between carbon dioxide and the storage formation are likely to occur. Should the CO2 temperature be lower than the storage formation, a contractive behaviour of the reservoir and caprock is expected. The latter can result in the opening of new paths or re-opening of fractures, favouring leakage and compromising the CCGS project. During CO2 injection, coupled thermo-hydro-mechanical phenomena occur, which due to their complexity, hamper the assessment of each relative influence. For this purpose, several analyses were carried out in order to evaluate their influences but focusing on the thermal contractive behaviour. It was finally concluded that depending on mechanical and thermal properties of the pair aquifer-seal, the sealing caprock can undergo significant decreases in effective stress.
Resumo:
This Thesis describes the application of automatic learning methods for a) the classification of organic and metabolic reactions, and b) the mapping of Potential Energy Surfaces(PES). The classification of reactions was approached with two distinct methodologies: a representation of chemical reactions based on NMR data, and a representation of chemical reactions from the reaction equation based on the physico-chemical and topological features of chemical bonds. NMR-based classification of photochemical and enzymatic reactions. Photochemical and metabolic reactions were classified by Kohonen Self-Organizing Maps (Kohonen SOMs) and Random Forests (RFs) taking as input the difference between the 1H NMR spectra of the products and the reactants. The development of such a representation can be applied in automatic analysis of changes in the 1H NMR spectrum of a mixture and their interpretation in terms of the chemical reactions taking place. Examples of possible applications are the monitoring of reaction processes, evaluation of the stability of chemicals, or even the interpretation of metabonomic data. A Kohonen SOM trained with a data set of metabolic reactions catalysed by transferases was able to correctly classify 75% of an independent test set in terms of the EC number subclass. Random Forests improved the correct predictions to 79%. With photochemical reactions classified into 7 groups, an independent test set was classified with 86-93% accuracy. The data set of photochemical reactions was also used to simulate mixtures with two reactions occurring simultaneously. Kohonen SOMs and Feed-Forward Neural Networks (FFNNs) were trained to classify the reactions occurring in a mixture based on the 1H NMR spectra of the products and reactants. Kohonen SOMs allowed the correct assignment of 53-63% of the mixtures (in a test set). Counter-Propagation Neural Networks (CPNNs) gave origin to similar results. The use of supervised learning techniques allowed an improvement in the results. They were improved to 77% of correct assignments when an ensemble of ten FFNNs were used and to 80% when Random Forests were used. This study was performed with NMR data simulated from the molecular structure by the SPINUS program. In the design of one test set, simulated data was combined with experimental data. The results support the proposal of linking databases of chemical reactions to experimental or simulated NMR data for automatic classification of reactions and mixtures of reactions. Genome-scale classification of enzymatic reactions from their reaction equation. The MOLMAP descriptor relies on a Kohonen SOM that defines types of bonds on the basis of their physico-chemical and topological properties. The MOLMAP descriptor of a molecule represents the types of bonds available in that molecule. The MOLMAP descriptor of a reaction is defined as the difference between the MOLMAPs of the products and the reactants, and numerically encodes the pattern of bonds that are broken, changed, and made during a chemical reaction. The automatic perception of chemical similarities between metabolic reactions is required for a variety of applications ranging from the computer validation of classification systems, genome-scale reconstruction (or comparison) of metabolic pathways, to the classification of enzymatic mechanisms. Catalytic functions of proteins are generally described by the EC numbers that are simultaneously employed as identifiers of reactions, enzymes, and enzyme genes, thus linking metabolic and genomic information. Different methods should be available to automatically compare metabolic reactions and for the automatic assignment of EC numbers to reactions still not officially classified. In this study, the genome-scale data set of enzymatic reactions available in the KEGG database was encoded by the MOLMAP descriptors, and was submitted to Kohonen SOMs to compare the resulting map with the official EC number classification, to explore the possibility of predicting EC numbers from the reaction equation, and to assess the internal consistency of the EC classification at the class level. A general agreement with the EC classification was observed, i.e. a relationship between the similarity of MOLMAPs and the similarity of EC numbers. At the same time, MOLMAPs were able to discriminate between EC sub-subclasses. EC numbers could be assigned at the class, subclass, and sub-subclass levels with accuracies up to 92%, 80%, and 70% for independent test sets. The correspondence between chemical similarity of metabolic reactions and their MOLMAP descriptors was applied to the identification of a number of reactions mapped into the same neuron but belonging to different EC classes, which demonstrated the ability of the MOLMAP/SOM approach to verify the internal consistency of classifications in databases of metabolic reactions. RFs were also used to assign the four levels of the EC hierarchy from the reaction equation. EC numbers were correctly assigned in 95%, 90%, 85% and 86% of the cases (for independent test sets) at the class, subclass, sub-subclass and full EC number level,respectively. Experiments for the classification of reactions from the main reactants and products were performed with RFs - EC numbers were assigned at the class, subclass and sub-subclass level with accuracies of 78%, 74% and 63%, respectively. In the course of the experiments with metabolic reactions we suggested that the MOLMAP / SOM concept could be extended to the representation of other levels of metabolic information such as metabolic pathways. Following the MOLMAP idea, the pattern of neurons activated by the reactions of a metabolic pathway is a representation of the reactions involved in that pathway - a descriptor of the metabolic pathway. This reasoning enabled the comparison of different pathways, the automatic classification of pathways, and a classification of organisms based on their biochemical machinery. The three levels of classification (from bonds to metabolic pathways) allowed to map and perceive chemical similarities between metabolic pathways even for pathways of different types of metabolism and pathways that do not share similarities in terms of EC numbers. Mapping of PES by neural networks (NNs). In a first series of experiments, ensembles of Feed-Forward NNs (EnsFFNNs) and Associative Neural Networks (ASNNs) were trained to reproduce PES represented by the Lennard-Jones (LJ) analytical potential function. The accuracy of the method was assessed by comparing the results of molecular dynamics simulations (thermal, structural, and dynamic properties) obtained from the NNs-PES and from the LJ function. The results indicated that for LJ-type potentials, NNs can be trained to generate accurate PES to be used in molecular simulations. EnsFFNNs and ASNNs gave better results than single FFNNs. A remarkable ability of the NNs models to interpolate between distant curves and accurately reproduce potentials to be used in molecular simulations is shown. The purpose of the first study was to systematically analyse the accuracy of different NNs. Our main motivation, however, is reflected in the next study: the mapping of multidimensional PES by NNs to simulate, by Molecular Dynamics or Monte Carlo, the adsorption and self-assembly of solvated organic molecules on noble-metal electrodes. Indeed, for such complex and heterogeneous systems the development of suitable analytical functions that fit quantum mechanical interaction energies is a non-trivial or even impossible task. The data consisted of energy values, from Density Functional Theory (DFT) calculations, at different distances, for several molecular orientations and three electrode adsorption sites. The results indicate that NNs require a data set large enough to cover well the diversity of possible interaction sites, distances, and orientations. NNs trained with such data sets can perform equally well or even better than analytical functions. Therefore, they can be used in molecular simulations, particularly for the ethanol/Au (111) interface which is the case studied in the present Thesis. Once properly trained, the networks are able to produce, as output, any required number of energy points for accurate interpolations.
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
The industrialization of traditional processes relies on the scientific ability to understand the empirical evidence associated with traditional knowledge. Cork manufacturing includes one operation known as stabilization, where humid cork slabs are extensively colonized by fungi. The implications of fungal growth on the chemical quality of cork through the analysis of putative fungal metabolites have already been investigated. However, the effect of fungal growth on the mechanical properties of cork remains unexplored. This study investigated the effect of cork colonization on the integrity of the cork cell walls and their mechanical performance. Fungal colonization of cork by Chrysonilia sitophila, Mucor plumbeus Penicillium glabrum, P. olsonii, and Trichoderma longibrachiatum was investigated by microscopy. Growth occurred primarily on the surface of the cork pieces, but mycelium extended deeper into the cork layers, mostly via lenticular channels and by hyphal penetration of the cork cell wall. In this first report on cork decay in which specific correlation between fungal colonization and mechanical proprieties of the cork has been investigated, all colonizing fungi except C. sitophila, reduced cork strength, markedly altering its viscoelastic behaviour and reducing its Young’s modulus.
Resumo:
Since 1989, five parliamentary elections have been the stage for the foundation and demise of political parties aspiring to govern the new democratic Polish state. The demise of the AWS before the 2001 elections after ten years of attempts to create a centre-right core party resulted in a new splintering of the right-wing, and the centre-right became again devoid of a pivotal formation. While Eurosceptic parties in average gain 8 percent of the vote, in the 2001 Polish parliamentary elections Eurosceptic parties gained around 20 percent of the vote. In Poland right-wing parties show an unusual propensity for Euroscepticism. The persistence and increased importance of nationalism in Poland, which has prevented the development of a strong Christian democratic party, effectively explains the levels of Euroscepticism on the right. After the autumn 2005 parliamentary elections the national conservative party, Law and Justice, formed a governing coalition with the national Catholic League of Polish Families, creating one of the first Eurosceptic governments. Although this work does not intend to provide a theorisation of party systems development, it shows that the context of European integration fostered nationalists’ divisiveness of, and provoked the splitting of the right the unusual propensity of parties for Euroscepticism makes Poland a paradigmatic case of the kind of conflicts over European integration emerging in Central and Eastern European party systems.
Resumo:
A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy in Sanitary Engineering in the Faculty of Sciences and Technology of the New University of Lisbon
Resumo:
Trabalho apresentado no âmbito do Doutoramento em Informática, como requisito parcial para obtenção do grau de Doutor em Informática
Resumo:
Dissertation submitted in partial fulfillment of the requirements for degree of Master in Statistics and Information Management.
Resumo:
pp. 157-168
Resumo:
Etnográfica, 15 (2): 313-336