2 resultados para Spatial order


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the recent past, hardly anyone could predict this course of GIS development. GIS is moving from desktop to cloud. Web 2.0 enabled people to input data into web. These data are becoming increasingly geolocated. Big amounts of data formed something that is called "Big Data". Scientists still don't know how to deal with it completely. Different Data Mining tools are used for trying to extract some useful information from this Big Data. In our study, we also deal with one part of these data - User Generated Geographic Content (UGGC). The Panoramio initiative allows people to upload photos and describe them with tags. These photos are geolocated, which means that they have exact location on the Earth's surface according to a certain spatial reference system. By using Data Mining tools, we are trying to answer if it is possible to extract land use information from Panoramio photo tags. Also, we tried to answer to what extent this information could be accurate. At the end, we compared different Data Mining methods in order to distinguish which one has the most suited performances for this kind of data, which is text. Our answers are quite encouraging. With more than 70% of accuracy, we proved that extracting land use information is possible to some extent. Also, we found Memory Based Reasoning (MBR) method the most suitable method for this kind of data in all cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The forest has a crucial ecological role and the continuous forest loss can cause colossal effects on the environment. As Armenia is one of the low forest covered countries in the world, this problem is more critical. Continuous forest disturbances mainly caused by illegal logging started from the early 1990s had a huge damage on the forest ecosystem by decreasing the forest productivity and making more areas vulnerable to erosion. Another aspect of the Armenian forest is the lack of continuous monitoring and absence of accurate estimation of the level of cuts in some years. In order to have insight about the forest and the disturbances in the long period of time we used Landsat TM/ETM + images. Google Earth Engine JavaScript API was used, which is an online tool enabling the access and analysis of a great amount of satellite imagery. To overcome the data availability problem caused by the gap in the Landsat series in 1988- 1998, extensive cloud cover in the study area and the missing scan lines, we used pixel based compositing for the temporal window of leaf on vegetation (June-late September). Subsequently, pixel based linear regression analyses were performed. Vegetation indices derived from the 10 biannual composites for the years 1984-2014 were used for trend analysis. In order to derive the disturbances only in forests, forest cover layer was aggregated and the original composites were masked. It has been found, that around 23% of forests were disturbed during the study period.