2 resultados para Spatial order

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a new approach for the numerical solution of three-dimensional problems in elastodynamics. The new methodology, which is based on a recently introduced Fourier continuation (FC) algorithm for the solution of Partial Differential Equations on the basis of accurate Fourier expansions of possibly non-periodic functions, enables fast, high-order solutions of the time-dependent elastic wave equation in a nearly dispersionless manner, and it requires use of CFL constraints that scale only linearly with spatial discretizations. A new FC operator is introduced to treat Neumann and traction boundary conditions, and a block-decomposed (sub-patch) overset strategy is presented for implementation of general, complex geometries in distributed-memory parallel computing environments. Our treatment of the elastic wave equation, which is formulated as a complex system of variable-coefficient PDEs that includes possibly heterogeneous and spatially varying material constants, represents the first fully-realized three-dimensional extension of FC-based solvers to date. Challenges for three-dimensional elastodynamics simulations such as treatment of corners and edges in three-dimensional geometries, the existence of variable coefficients arising from physical configurations and/or use of curvilinear coordinate systems and treatment of boundary conditions, are all addressed. The broad applicability of our new FC elasticity solver is demonstrated through application to realistic problems concerning seismic wave motion on three-dimensional topographies as well as applications to non-destructive evaluation where, for the first time, we present three-dimensional simulations for comparison to experimental studies of guided-wave scattering by through-thickness holes in thin plates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a new class of solvers for the subsonic compressible Navier-Stokes equations in general two- and three-dimensional spatial domains. The proposed methodology incorporates: 1) A novel linear-cost implicit solver based on use of higher-order backward differentiation formulae (BDF) and the alternating direction implicit approach (ADI); 2) A fast explicit solver; 3) Dispersionless spectral spatial discretizations; and 4) A domain decomposition strategy that negotiates the interactions between the implicit and explicit domains. In particular, the implicit methodology is quasi-unconditionally stable (it does not suffer from CFL constraints for adequately resolved flows), and it can deliver orders of time accuracy between two and six in the presence of general boundary conditions. In fact this thesis presents, for the first time in the literature, high-order time-convergence curves for Navier-Stokes solvers based on the ADI strategy---previous ADI solvers for the Navier-Stokes equations have not demonstrated orders of temporal accuracy higher than one. An extended discussion is presented in this thesis which places on a solid theoretical basis the observed quasi-unconditional stability of the methods of orders two through six. The performance of the proposed solvers is favorable. For example, a two-dimensional rough-surface configuration including boundary layer effects at Reynolds number equal to one million and Mach number 0.85 (with a well-resolved boundary layer, run up to a sufficiently long time that single vortices travel the entire spatial extent of the domain, and with spatial mesh sizes near the wall of the order of one hundred-thousandth the length of the domain) was successfully tackled in a relatively short (approximately thirty-hour) single-core run; for such discretizations an explicit solver would require truly prohibitive computing times. As demonstrated via a variety of numerical experiments in two- and three-dimensions, further, the proposed multi-domain parallel implicit-explicit implementations exhibit high-order convergence in space and time, useful stability properties, limited dispersion, and high parallel efficiency.