7 resultados para SILICA REACTION
Resumo:
Pavements require maintenance in order to provide good service levels during their life period. Because of the significant costs of this operation and the importance of a proper planning, a pavement evaluation methodology, named Pavement Condition Index (PCI), was created by the U.S. Army Corps of Engineers. This methodology allows for the evaluation of the pavement condition along the life period, generally yearly, with minimum costs and, in this way, it is possible to plan the maintenance action and to adopt adequate measures, minimising the rehabilitation costs. The PCI methodology provides an evaluation based on visual inspection, namely on the distresses observed on the pavement. This condition index of the pavement is classified from 0 to 100, where 0 it is the worst possible condition and 100 the best possible condition. This methodology of pavement assessment represents a significant tool for management methods such as airport pavement management system (APMS) and life-cycle costs analysis (LCCA). Nevertheless, it has some limitations which can jeopardize the correct evaluation of the pavement behavior. Therefore the objective of this dissertation is to help reducing its limitations and make it easier and faster to use. Thus, an automated process of PCI calculation was developed, avoiding the abaci consultation, and consequently, minimizing the human error. To facilitate also the visual inspection a Tablet application was developed to replace the common inspection data sheet and thus making the survey easier to be undertaken. Following, an airport pavement condition was study accordingly with the methodology described at Standard Test Method for Airport Pavement Condition Index Surveys D5340, 2011 where its original condition level is compared with the condition level after iterate possible erroneous considered distresses as well as possible rehabilitations. Afterwards, the results obtained were analyzed and the main conclusions presented together with some future developments.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Química, especialidade em Química-Física, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
International Conference Durable Structures: from construction to rehabilitation. Lisbon, LNEC, 31 May-1 June 2012
Resumo:
Materials Science Forum Vols. 730-732 (2013) pp 433-438
Resumo:
Dissertação para obtenção do Grau de Doutora em Engenharia Química e Bioquímica
Resumo:
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centres and universities
Resumo:
With the projection of an increasing world population, hand-in-hand with a journey towards a bigger number of developed countries, further demand on basic chemical building blocks, as ethylene and propylene, has to be properly addressed in the next decades. The methanol-to-olefins (MTO) is an interesting reaction to produce those alkenes using coal, gas or alternative sources, like biomass, through syngas as a source for the production of methanol. This technology has been widely applied since 1985 and most of the processes are making use of zeolites as catalysts, particularly ZSM-5. Although its selectivity is not especially biased over light olefins, it resists to a quick deactivation by coke deposition, making it quite attractive when it comes to industrial environments; nevertheless, this is a highly exothermic reaction, which is hard to control and to anticipate problems, such as temperature runaways or hot-spots, inside the catalytic bed. The main focus of this project is to study those temperature effects, by addressing both experimental, where the catalytic performance and the temperature profiles are studied, and modelling fronts, which consists in a five step strategy to predict the weight fractions and activity. The mind-set of catalytic testing is present in all the developed assays. It was verified that the selectivity towards light olefins increases with temperature, although this also leads to a much faster catalyst deactivation. To oppose this effect, experiments were carried using a diluted bed, having been able to increase the catalyst lifetime between 32% and 47%. Additionally, experiments with three thermocouples placed inside the catalytic bed were performed, analysing the deactivation wave and the peaks of temperature throughout the bed. Regeneration was done between consecutive runs and it was concluded that this action can be a powerful means to increase the catalyst lifetime, maintaining a constant selectivity towards light olefins, by losing acid strength in a steam stabilised zeolitic structure. On the other hand, developments on the other approach lead to the construction of a raw basic model, able to predict weight fractions, that should be tuned to be a tool for deactivation and temperature profiles prediction.