16 resultados para Power Sensitivity Model
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This thesis provides an alternative framework to analyze power and ethics practiced in everyday conversations, which constitute processes of organizing. Drawing upon narrative frameworks, the analyses of messages posted on an online message board demonstrate people’s imaginative capacity to create relevant stories, in respect of their precise grasp of factual understandings, contextual relevance and evaluative/moral appropriateness, by appropriating others’ words. Based on the empirical analyses, the thesis indicates that studies on power and ethics in organizations can be re-oriented towards appreciating irremediable power imbalances by offering alternative ways of member’s denoting experiences of power.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Dissertation to obtain a Master Degree in Biotechnology
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
The future of health care delivery is becoming more citizen-centred, as today’s user is more active, better informed and more demanding. The European Commission is promoting online health services and, therefore, member states will need to boost deployment and use of online services. This makes e-health adoption an important field to be studied and understood. This study applied the extended unified theory of acceptance and usage technology (UTAUT2) to explain patients’ individual adoption of e-health. An online questionnaire was administrated Portugal using mostly the same instrument used in UTAUT2 adapted to e-health context. We collected 386 valid answers. Performance expectancy, effort expectancy, social influence, and habit had the most significant explanatory power over behavioural intention and habit and behavioural intention over technology use. The model explained 52% of the variance in behavioural intention and 32% of the variance in technology use. Our research helps to understand the desired technology characteristics of ehealth. By testing an information technology acceptance model, we are able to determine what is more valued by patients when it comes to deciding whether to adopt e-health systems or not.
Resumo:
The results discussed in this thesis originated the following communications in International and National congresses: Sacramento JF, Coelho JC, Melo BF, Guarino MP and Conde SV. (2014) Assessment of caffeine dose and time of administration required for resetting insulin sensitivity in high sucrose diet in rats. 50th Meeting of EASD (European Association for the study of Diabetes), 14-19 September, Vienna, Austria Coelho JC, Melo BF, Sacramento JF, Guarino MP and Conde SV (2014). Establishing the caffeine dose that chronically restores insulin sensitivity in animal model of prediabetes. Fundação Astrazeneca Innovate Competition, iMed conference 6.0®, 10-12 October, Lisboa, Portugal Also, during the last year I was involved in other ongoing projects that originated the following communications: Coelho JC, Melo BF, Sacramento JF, Ribeiro MJ, Guarino MP and Conde SV (2014). Are the effects of carotid sinus nerve resection on insulin sensitivity mediated by an increase in Glut4 expression in skeletal muscle?. XLIV Reunião Anual da Sociedade Portuguesa de Farmacologia, XXXII Reunião de Farmacologia Clínica e XIII Reunião de Toxicologia, 5-7 February, Coimbra, Portugal Sacramento JF, Rodrigues T, Coelho JC, Matafome P, Ribeiro MJ, Seiça RM, Guarino MP, Conde SV (2014). Elucidating the mechanism by which carotid sinus nerve resection restores insulin sensitivity in pre-diabetes animal models. International Society for Arterial Chemoreception (ISAC) XIX University of Leeds, 29th June - 3rd July, Leeds, United Kingdom
Resumo:
This work aims to identify and rank a set of Lean and Green practices and supply chain performance measures on which managers should focus to achieve competitiveness and improve the performance of automotive supply chains. The identification of the contextual relationships among the suggested practices and measures, was performed through literature review. Their ranking was done by interviews with professionals from the automotive industry and academics with wide knowledge on the subject. The methodology of interpretive structural modelling (ISM) is a useful methodology to identify inter relationships among Lean and Green practices and supply chain performance measures and to support the evaluation of automotive supply chain performance. Using the ISM methodology, the variables under study were clustered according to their driving power and dependence power. The ISM methodology was proposed to be used in this work. The model intends to provide a better understanding of the variables that have more influence (driving variables), the others and those which are most influenced (dependent variables) by others. The information provided by this model is strategic for managers who can use it to identify which variables they should focus on in order to have competitive supply chains.
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices, implemented as a software,describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
Cryocoolers have been progressively replacing the use of the stored cryogens in cryogenic chains used for detector cooling, thanks to their higher and higher reliability. However, the mechanical vibrations, the electromagnetic interferences and the temperature fluctuations inherent to their functioning could reduce the sensor’s sensitivity. In order to minimize this problem, compact thermal energy storage units (ESU) are studied, devices able to store thermal energy without significant temperature increase. These devices can be used as a temporary cold source making it possible to turn the cryocooler OFF providing a proper environment for the sensor. A heat switch is responsible for the thermal decoupling of the ESU from the cryocooler’s temperature that increases when turned OFF. In this work, several prototypes working around 40 K were designed, built and characterized. They consist in a low temperature cell that contains the liquid neon connected to an expansion volume at room temperature for gas storage during the liquid evaporation phase. To turn this system insensitive to the gravity direction, the liquid is retained in the low temperature cell by capillary effect in a porous material. Thanks to pressure regulation of the liquid neon bath, 900 J were stored at 40K. The higher latent heat of the liquid and the inexistence of triple point transitions at 40 K turn the pressure control during the evaporation a versatile and compact alternative to an ESU working at the triple point transitions. A quite compact second prototype ESU directly connected to the cryocooler cold finger was tested as a temperature stabilizer. This device was able to stabilize the cryocooler temperature ((≈ 40K ±1 K) despite sudden heat bursts corresponding to twice the cooling power of the cryocooler. This thesis describes the construction of these devices as well as the tests performed. It is also shown that the thermal model developed to predict the thermal behaviour of these devices,implemented as a software, describes quite well the experimental results. Solutions to improve these devices are also proposed.
Resumo:
Major in Competition and Regulation
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.