13 resultados para Non-Linear Analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

15th IEEE International Conference on Electronics, Circuits and Systems, Malta

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion of reinforcement bars in concrete structures is the most significant deterioration mechanism in these structures. Corrosion is extremely difficult to predict and, consequently, can be regarded as an unpredictable event. Following this, robustness assessment methods can be employed to define the susceptibility of a structure to corrosion. In this work, robustness is measured in terms of the remaining safety of a deteriorated structure. The proposed methodology is illustrated by means of a reinforced concrete (RC) slab subjected to dead and live loads. The performance of the corroded slab is evaluated using non-linear analysis. The reliability index is adopted to assess the safety of the deteriorated structure. To compute the reliability index a strategy combining the First Order Reliability Method (FORM) and the Response Surface Method (RSM) is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last three decades have seen quite dramatic changes the way we modeled time dependent data. Linear processes have been in the center stage in modeling time series. As far as the second order properties are concerned, the theory and the methodology are very adequate.However, there are more and more evidences that linear models are not sufficiently flexible and rich enough for modeling purposes and that failure to account for non-linearities can be very misleading and have undesired consequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The theme of this dissertation is the finite element method applied to mechanical structures. A new finite element program is developed that, besides executing different types of structural analysis, also allows the calculation of the derivatives of structural performances using the continuum method of design sensitivities analysis, with the purpose of allowing, in combination with the mathematical programming algorithms found in the commercial software MATLAB, to solve structural optimization problems. The program is called EFFECT – Efficient Finite Element Code. The object-oriented programming paradigm and specifically the C ++ programming language are used for program development. The main objective of this dissertation is to design EFFECT so that it can constitute, in this stage of development, the foundation for a program with analysis capacities similar to other open source finite element programs. In this first stage, 6 elements are implemented for linear analysis: 2-dimensional truss (Truss2D), 3-dimensional truss (Truss3D), 2-dimensional beam (Beam2D), 3-dimensional beam (Beam3D), triangular shell element (Shell3Node) and quadrilateral shell element (Shell4Node). The shell elements combine two distinct elements, one for simulating the membrane behavior and the other to simulate the plate bending behavior. The non-linear analysis capability is also developed, combining the corotational formulation with the Newton-Raphson iterative method, but at this stage is only avaiable to solve problems modeled with Beam2D elements subject to large displacements and rotations, called nonlinear geometric problems. The design sensitivity analysis capability is implemented in two elements, Truss2D and Beam2D, where are included the procedures and the analytic expressions for calculating derivatives of displacements, stress and volume performances with respect to 5 different design variables types. Finally, a set of test examples were created to validate the accuracy and consistency of the result obtained from EFFECT, by comparing them with results published in the literature or obtained with the ANSYS commercial finite element code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para Obtenção de Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the biggest challenges for humanity is global warming and consequently, climate changes. Even though there has been increasing public awareness and investments from numerous countries concerning renewable energies, fossil fuels are and will continue to be in the near future, the main source of energy. Carbon capture and storage (CCS) is believed to be a serious measure to mitigate CO2 concentration. CCS briefly consists of capturing CO2 from the atmosphere or stationary emission sources and transporting and storing it via mineral carbonation, in oceans or geological media. The latter is referred to as carbon capture and geological storage (CCGS) and is considered to be the most promising of all solutions. Generally it consists of a storage (e.g. depleted oil reservoirs and deep saline aquifers) and sealing (commonly termed caprock in the oil industry) formations. The present study concerns the injection of CO2 into deep aquifers and regardless injection conditions, temperature gradients between carbon dioxide and the storage formation are likely to occur. Should the CO2 temperature be lower than the storage formation, a contractive behaviour of the reservoir and caprock is expected. The latter can result in the opening of new paths or re-opening of fractures, favouring leakage and compromising the CCGS project. During CO2 injection, coupled thermo-hydro-mechanical phenomena occur, which due to their complexity, hamper the assessment of each relative influence. For this purpose, several analyses were carried out in order to evaluate their influences but focusing on the thermal contractive behaviour. It was finally concluded that depending on mechanical and thermal properties of the pair aquifer-seal, the sealing caprock can undergo significant decreases in effective stress.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Complex systems, i.e. systems composed of a large set of elements interacting in a non-linear way, are constantly found all around us. In the last decades, different approaches have been proposed toward their understanding, one of the most interesting being the Complex Network perspective. This legacy of the 18th century mathematical concepts proposed by Leonhard Euler is still current, and more and more relevant in real-world problems. In recent years, it has been demonstrated that network-based representations can yield relevant knowledge about complex systems. In spite of that, several problems have been detected, mainly related to the degree of subjectivity involved in the creation and evaluation of such network structures. In this Thesis, we propose addressing these problems by means of different data mining techniques, thus obtaining a novel hybrid approximation intermingling complex networks and data mining. Results indicate that such techniques can be effectively used to i) enable the creation of novel network representations, ii) reduce the dimensionality of analyzed systems by pre-selecting the most important elements, iii) describe complex networks, and iv) assist in the analysis of different network topologies. The soundness of such approach is validated through different validation cases drawn from actual biomedical problems, e.g. the diagnosis of cancer from tissue analysis, or the study of the dynamics of the brain under different neurological disorders.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main purpose of the present dissertation is the simulation of the response of fibre grout strengthened RC panels when subjected to blast effects using the Applied Element Method, in order to validate and verify its applicability. Therefore, four experimental models, three of which were strengthened with a cement-based grout, each reinforced by one type of steel reinforcement, were tested against blast effects. After the calibration of the experimental set-up, it was possible to obtain and compare the response to the blast effects of the model without strengthening (reference model), and a fibre grout strengthened RC panel (strengthened model). Afterwards, a numerical model of the reference model was created in the commercial software Extreme Loading for Structures, which is based on the Applied Element Method, and calibrated to the obtained experimental results, namely to the residual displacement obtained by the experimental monitoring system. With the calibration verified, it is possible to assume that the numerical model correctly predicts the response of fibre grout RC panels when subjected to blast effects. In order to verify this assumption, the strengthened model was modelled and subjected to the blast effects of the corresponding experimental set-up. The comparison between the residual and maximum displacements and the bottom surface’s cracking obtained in the experimental and the numerical tests yields a difference of 4 % for the maximum displacements of the reference model, and a difference of 4 and 10 % for the residual and maximum displacements of the strengthened model, respectively. Additionally, the cracking on the bottom surface of the models was similar in both methods. Therefore, one can conclude that the Applied ElementMethod can correctly predict and simulate the response of fibre grout strengthened RC panels when subjected to blast effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The design of anchorage blisters of internal continuity post-tensioning tendons of bridges built by the cantilever method, presents some peculiarities, not only because they are intermediate anchorages but also because these anchorages are located in blisters, so the prestressing force has to be transferred from the blister the bottom slab and web of the girder. The high density of steel reinforcement in anchorage blisters is the most common reason for problems with concrete cast in situ, resulting in zones with low concrete compacity, leading to concrete crushing failures under the anchor plates. A solution may involve improving the concrete compression and tensile strength. To meet these requirements a high-performance fibre reinforced self-compacting mix- ture (HPFRC) was used in anchorage corner blisters of post-tensioning tendons, reducing the concrete cross-section and decreasing the reinforcement needed. To assess the ultimate capacity and the adequate serviceability of the local anchorage zone after reducing the minimum concrete cross-section and the confining reinforcement, specified by the anchorage device supplier for the particular tendon, load transfer tests were performed. To investigate the behaviour of anchorage blisters regarding the transmission of stresses to the web and the bottom slab of the girder, and the feasibility of using high performance concrete only in the blister, two half scale models of the inferior corner of a box girder existing bridge were studied: a reference specimen of ordinary reinforced concrete and a HPFRC blister specimen. The design of the reinforcement was based in the tensile forces obtained on strut-and-tie models. An experimental program was carried out to assess the models used in design and to study the feasibility of using high performance concrete only in the blister, either with casting in situ, or with precast solutions. A non-linear finite element analysis of the tested specimens was also performed and the results compared.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This present study aimed to investigate the fatigue life of unused (new) endodontic instruments made of NiTi with control memory by Coltene™ and subjected to the multi curvature of a mandibular first molar root canal. Additionally, the instrument‟s structural behaviour was analysed through non-linear finite element analysis (FEA). The fatigue life of twelve Hyflex™ CM files was assessed while were forced to adopt a stance with multiple radius of curvature, similar to the ones usually found in a mandibular first molar root canal; nine of them were subjected to Pecking motion, a relative movement of axial type. To achieve this, it was designed an experimental setup with the aim of timing the instruments until fracture while worked inside a stainless steel mandibular first molar model with relative axial motion to simulate the pecking motion. Additionally, the model‟s root canal multi-curvature was confirmed by radiography. The non-linear finite element analysis was conducted using the computer aided design software package SolidWorks™ Simulation, in order to define the imposed displacement required by the FEA, it was necessary to model an endodontic instrument with simplified geometry using SolidWorks™ and subsequently analyse the geometry of the root canal CAD model. The experimental results shown that the instruments subjected to pecking motion displayed higher fatigue life values and higher lengths of fractured tips than those with only rotational relative movement. The finite element non-linear analyses shown, for identical conditions, maximum values for the first principal stress lower than the yield strength of the material and those were located in similar positions to the instrument‟s fracture location determined by the experimental testing results.