12 resultados para NORMALIZED CHARGEABILITY
Resumo:
Dissertation presented at the Faculty of Science and Technology of the New University of Lisbon in fulfillment of the requirements for the Masters degree in Electrical Engineering and Computers
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation to Obtain the Degree of Master in Biomedical Engineering
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Energy-efficient diversity combining for different access schemes in a multi-path dispersive channel
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e Computadores
Resumo:
Saccharomyces cerevisiae as well as other microorganisms are frequently used in industry with the purpose of obtain different kind of products that can be applied in several areas (research investigation, pharmaceutical compounds, etc.). In order to obtain high yields for the desired product, it is necessary to make an adequate medium supplementation during the growth of the microorganisms. The higher yields are typically reached by using complex media, however the exact formulation of these media is not known. Moreover, it is difficult to control the exact composition of complex media, leading to batch-to-batch variations. So, to overcome this problem, some industries choose to use defined media, with a defined and known chemical composition. However these kind of media, many times, do not reach the same high yields that are obtained by using complex media. In order to obtain similar yield with defined media the addition of many different compounds has to be tested experimentally. Therefore, the industries use a set of empirical methods with which it is tried to formulate defined media that can reach the same high yields as complex media. In this thesis, a defined medium for Saccharomyces cerevisiae was developed using a rational design approach. In this approach a given metabolic network of Saccharomyces cerevisiae is divided into a several unique and not further decomposable sub networks of metabolic reactions that work coherently in steady state, so called elementary flux modes. The EFMtool algorithm was used in order to calculate the EFM’s for two Saccharomyces cerevisiae metabolic networks (amino acids supplemented metabolic network; amino acids non-supplemented metabolic network). For the supplemented metabolic network 1352172 EFM’s were calculated and then divided into: 1306854 EFM’s producing biomass, and 18582 EFM’s exclusively producing CO2 (cellular respiration). For the non-supplemented network 635 EFM’s were calculated and then divided into: 215 EFM’s producing biomass; 420 EFM’s producing exclusively CO2. The EFM’s of each group were normalized by the respective glucose consumption value. After that, the EFMs’ of the supplemented network were grouped again into: 30 clusters for the 1306854 EFMs producing biomass and, 20 clusters for the 18582 EFM’s producing CO2. For the non-supplemented metabolic network the respective EFM’s of each metabolic function were grouped into 10 clusters. After the clustering step, the concentrations of the other medium compounds were calculated by considering a reasonable glucose amount and by accounting for the proportionality between the compounds concentrations and the glucose ratios. The approach adopted/developed in this thesis may allow a faster and more economical way for media development.
Resumo:
The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.