15 resultados para In-stream structures
Resumo:
The considerable amount of energy consumed on Earth is a major cause for not achieving sustainable development. Buildings are responsible for the highest worldwide energy consumption, nearly 40%. Strong efforts have been made in what concerns the reduction of buildings operational energy (heating, hot water, ventilation, electricity), since operational energy is so far the highest energy component in a building life cycle. However, as operational energy is being reduced the embodied energy increases. One of the building elements responsible for higher embodied energy consumption is the building structural system. Therefore, the present work is going to study part of embodied energy (initial embodied energy) in building structures using a life cycle assessment methodology, in order to contribute for a greater understanding of embodied energy in buildings structural systems. Initial embodied energy is estimated for a building structure by varying the span and the structural material type. The results are analysed and compared for different stages, and some conclusions are drawn. At the end of this work it was possible to conclude that the building span does not have considerable influence in embodied energy consumption of building structures. However, the structural material type has influence in the overall energetic performance. In fact, with this research it was possible that building structure that requires more initial embodied energy is the steel structure; then the glued laminated timber structure; and finally the concrete structure.
Resumo:
Tissue engineering arises from the need to regenerate organs and tissues, requiring the development of scaffolds, which can provide an optimum environment for tissue growth. In this work, chitosan with different molecular weights was used to develop biodegradable 3D inverted colloidal crystals (ICC) structures for bone regeneration, exhibiting uniform pore size and interconnected network. Moreover, in vitro tests were conducted by studying the influence of the molecular weight in the degradation kinetics and mechanical properties. The production of ICC included four major stages: fabrication of microspheres; assembly into a cohesive structure, polymeric solution infiltration and microsphere removal. Chitosan’s degree of deacetylation was determined by infrared spectroscopy and molecular weight was obtained via capillary viscometry. In order to understand the effect of the molecular weight in ICC structures, the mass loss and mechanical properties were analyzed after degradation with lysozyme. Structure morphology observation before and after degradation was performed by scanning electron microscopy. Cellular adhesion and proliferation tests were carried out to evaluate ICC in vitro response. Overall, medium molecular weight ICC revealed the best balance in terms of mechanical properties, degradation rate, morphology and biological behaviour.
Resumo:
In developed countries, civil infrastructures are one of the most significant investments of governments, corporations, and individuals. Among these, transportation infrastructures, including highways, bridges, airports, and ports, are of huge importance, both economical and social. Most developed countries have built a fairly complete network of highways to fit their needs. As a result, the required investment in building new highways has diminished during the last decade, and should be further reduced in the following years. On the other hand, significant structural deteriorations have been detected in transportation networks, and a huge investment is necessary to keep these infrastructures safe and serviceable. Due to the significant importance of bridges in the serviceability of highway networks, maintenance of these structures plays a major role. In this paper, recent progress in probabilistic maintenance and optimization strategies for deteriorating civil infrastructures with emphasis on bridges is summarized. A novel model including interaction between structural safety analysis,through the safety index, and visual inspections and non destructive tests, through the condition index, is presented. Single objective optimization techniques leading to maintenance strategies associated with minimum expected cumulative cost and acceptable levels of condition and safety are presented. Furthermore, multi-objective optimization is used to simultaneously consider several performance indicators such as safety, condition, and cumulative cost. Realistic examples of the application of some of these techniques and strategies are also presented.
Resumo:
Corrosion of reinforcement bars in concrete structures is the most significant deterioration mechanism in these structures. Corrosion is extremely difficult to predict and, consequently, can be regarded as an unpredictable event. Following this, robustness assessment methods can be employed to define the susceptibility of a structure to corrosion. In this work, robustness is measured in terms of the remaining safety of a deteriorated structure. The proposed methodology is illustrated by means of a reinforced concrete (RC) slab subjected to dead and live loads. The performance of the corroded slab is evaluated using non-linear analysis. The reliability index is adopted to assess the safety of the deteriorated structure. To compute the reliability index a strategy combining the First Order Reliability Method (FORM) and the Response Surface Method (RSM) is used.
Resumo:
Assessing the safety of existing timber structures is of paramount importance for taking reliable decisions on repair actions and their extent. The results obtained through semi-probabilistic methods are unrealistic, as the partial safety factors present in codes are calibrated considering the uncertainty present in new structures. In order to overcome these limitations, and also to include the effects of decay in the safety analysis, probabilistic methods, based on Monte-Carlo simulation are applied here to assess the safety of existing timber structures. In particular, the impact of decay on structural safety is analyzed and discussed, using a simple structural model, similar to that used for current semi-probabilistic analysis.
Resumo:
The study of the effect of radiation on living tissues is a rather complex task to address mainly because they are made of a set of complex functional biological structures and interfaces. Particularly if one is looking for where damage is taking place in a first stage and what are the underlying reaction mechanisms. In this work a new approach is addressed to study the effect of radiation by making use of well identified molecular hetero-structures samples which mimic the biological environment. These were obtained by assembling onto a solid support deoxyribonucleic acid (DNA) and phospholipids together with a soft water-containing polyelectrolyte precursor in layered structures and by producing lipid layers at liquid/air interface with DNA as subphase. The effects of both ultraviolet (UV) radiation and carbon ions beams were systematically investigated in these heterostructures, namely damage on DNA by means vacuum ultraviolet (VUV), infrared (IR), X-Ray Photoelectron (XPS) and impedance spectroscopy. Experimental results revealed that UV affects furanose, PO2-, thymines, cytosines and adenines groups. The XPS spectrometry carried out on the samples allowed validate the VUV and IR results and to conclude that ionized phosphate groups, surrounded by the sodium counterions, congregate hydration water molecules which play a role of UV protection. The ac electrical conductivity measurements revealed that the DNA electrical conduction is arising from DNA chain electron hopping between base-pairs and phosphate groups, with the hopping distance equal to the distance between DNA base-pairs and is strongly dependent on UV radiation exposure, due loss of phosphate groups. Characterization of DNA samples exposed to a 4 keV C3+ ions beam revealed also carbon-oxygen bonds break, phosphate groups damage and formation of new species. Results from radiation induced damage carried out on biomimetic heterostructures having different compositions revealed that damage is dependent on sample composition, with respect to functional targeted groups and extent of damage. Conversely, LbL films of 1,2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) liposomes, alternated with poly(allylamine hydrochloride) (PAH) revealed to be unaffected, even by prolonged UV irradiation exposure, in the absence of water molecules. However, DPPG molecules were damaged by the UV radiation in presence of water with cleavage of C-O, C=O and –PO2- bonds. Finally, the study of DNA interaction with the ionic lipids at liquid/air interfaces revealed that electrical charge of the lipid influences the interaction of phospholipid with DNA. In the presence of DNA in the subphase, the effects from UV irrladiation were seen to be smaller, which means that ionic products from biomolecules degradation stabilize the intact DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV.
Resumo:
O objetivo final deste estudo é contribuir para a discussão sobre qual a medida em que conceitos semânticos e discursivos estão sintaticamente codificados. Mais especificamente, investiga-se se existe alguma correlação consistente entre alguns aspetos interpretativos e sintáticos de quatro construções clivadas do Português Europeu, e como se deve dar conta teoricamente destas potenciais correlações. As clivadas consideradas são as clivadas canónicas, as pseudoclivadas, as clivadas de é que e as clivadas de SER. Sintaticamente podemos distinguir dois tipos: clivadas bioracionais (canónicas e pseudoclivadas) e clivadas mono-oracionais (clivadas de é que e de SER). Todas as estruturas têm um constituinte clivado focalizado que pode constituir tanto um foco informacional como um foco contrastivo, e uma oração clivada que introduz uma pressuposição existencial. Adicionalmente, o constituinte clivado identifica exaustivamente uma posição vazia na oração clivada. Adota-se a semântica alternativa para o foco (Rooth 1985), segundo a qual o foco entoacional contribui uniformemente um conjunto de alternativas na Forma Lógica. Regras pragmáticas operando neste conjunto dão origem a duas implicaturas que podem ser suspensas: pressuposição existencial e exaustividade. Dado que as clivadas de é que e as de SER têm a mesma interpretação que orações não-clivadas, conclui-se que a sua estrutura sintática particular não contribui para estas propriedades interpretativas. Em contrapartida, as clivadas bioracionais, que são orações copulativas especificacionais, têm uma presuposição existencial e uma interpretação exaustiva que não pode ser suspensa, tal como as orações especificacionais não-clivadas. Argumenta-se que isto se deve ao facto de o constituinte clivado identificar uma variável introduzida por uma descrição definida. Demonstra-se que a oração clivada, uma relativa em posição de complemento de um determinador definido nas clivadas canónicas e uma relativa livre nas pseudoclivadas, tem a mesma denotação que um DP definido, e portanto tem uma pressuposição existencial inerente. A interpretação exaustiva deve-se à relação identificacional entre o constituinte clivado e a descrição definida. Além disso, defende-se que em Português Europeu um traço de foco não desencadeia movimento-A’ para um FocP especializado. Os constituintes focalizados movem-se antes por razões independentes do foco. Isto é confirmado pelo facto de apenas o constituinte clivado das clivadas de é que ter propriedades de movimento A’, os outros parecem estar in situ. Propõe-se que o constituinte clivado das clivadas de é que é um tópico com um traço de foco que se move para um TopP. Esta análise dá conta da existência de restrições discursivas semelhantes para tópicos não focalizados e para o constituinte clivado das clivadas de é que. O traço quantificacional de foco arrastado pela topicalização dá origem a efeitos de intervenção, causando a não-recursividade do foco na periferia esquerda e a sua incompatibilidade com movimento de outros constituintes com traços quantificacionais. A análise prediz as restrições de encaixe observadas para as clivadas de é que. Finalmente, desenvolve-se uma análise sintática das clivadas de SER que aproxima estas estruturas das estruturas com partículas de foco. Propõe-se que a cópula é um operador sensível ao foco que é merged juntamente com o constituinte clivado. As restrições distribucionais da cópula devem-se a requisitos selecionais de núcleos.
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada à Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Doutor em Engenharia Civil
Resumo:
Some of the properties sought in seismic design of buildings are also considered fundamental to guarantee structural robustness. Moreover, some key concepts are common to both seismic and robustness design. In fact, both analyses consider events with a very small probability of occurrence, and consequently, a significant level of damage is admissible. As very rare events,in both cases, the actions are extremely hard to quantify. The acceptance of limited damage requires a system based analysis of structures, rather than an element by element methodology, as employed for other load cases. As for robustness analysis, in seismic design the main objective is to guarantee that the structure survives an earthquake, without extensive damage. In the case of seismic design, this is achieved by guaranteeing the dissipation of energy through plastic hinges distributed in the structure. For this to be possible, some key properties must be assured, in particular ductility and redundancy. The same properties could be fundamental in robustness design, as a structure can only sustain significant damage if capable of distributing stresses to parts of the structure unaffected by the triggering event. Timber is often used for primary load‐bearing elements in single storey long‐span structures for public buildings and arenas, where severe consequences can be expected if one or more of the primary load bearing elements fail. The structural system used for these structures consists of main frames, secondary elements and bracing elements. The main frame, composed by columns and beams, can be seen as key elements in the system and should be designed with high safety against failure and under strict quality control. The main frames may sometimes be designed with moment resisting joints between columns and beams. Scenarios, where one or more of these key elements, fail should be considered at least for high consequence buildings. Two alternative strategies may be applied: isolation of collapsing sections and, provision of alternate load paths [1]. The first one is relatively straightforward to provide by deliberately designing the secondary structural system less strong and stiff. Alternatively, the secondary structural system and the bracing system can be design so that loss of capacity in the main frame does not lead to the collapse. A case study has been selected aiming to assess the consequences of these two different strategies, in particular, under seismic loads.
Resumo:
Structural robustness is an emergent concept related to the structural response to damage. At the present time, robustness is not well defined and much controversy still remains around this subject. Even if robustness has seen growing interest as a consequence of catastrophic consequences due to extreme events, the fact is that the concept can also be very useful when considered on more probable exposure scenarios such as deterioration, among others. This paper intends to be a contribution to the definition of structural robustness, especially in the analysis of reinforced concrete structures subjected to corrosion. To achieve this, first of all, several proposed robustness definitions and indicators and misunderstood concepts will be analyzed and compared. From this point and regarding a concept that could be applied to most type of structures and dam-age scenarios, a robustness definition is proposed. To illustrate the proposed concept, an example of corroded reinforced concrete structures will be analyzed using nonlinear analysis numerical methods based on a contin-uum strong discontinuities approach and isotropic damage models for concrete. Finally the robustness of the presented example will be assessed.
Resumo:
Old timber structures may show significant variation in the cross section geometry along the same element, as a result of both construction methods and deterioration. As consequence, the definition of the geometric parameters in situ may be both time consuming and costly. This work presents the results of inspections carried out in different timber structures. Based on the obtained results, different simplified geometric models are proposed in order to efficiently model the geometry variations found. Probabilistic modelling techniques are also used to define safety parameters of existing timber structures, when subjected to dead and live loads, namely self-weight and wind actions. The parameters of the models have been defined as probabilistic variables, and safety of a selected case study was assessed using the Monte Carlo simulation technique. Assuming a target reliability index, a model was defined for both the residual cross section and the time dependent deterioration evolution. As a consequence, it was possible to compute probabilities of failure and reliability indices, as well as, time evolution deterioration curves for this structure. The results obtained provide a proposal for definition of the cross section geometric parameters of existing timber structures with different levels of decay, using a simplified probabilistic geometry model and considering a remaining capacity factor for the decayed areas. This model can be used for assessing the safety of the structure at present and for predicting future performance.
Resumo:
HMC08 - 1st Historical Mortars Conference: Characterization, Diagnosis, Conservation, Repair and Compatibility, LNEC, Lisbon, 24-26 September 2008
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Estruturas
Resumo:
In order to address and resolve the wastewater contamination problem of the Sines refinery with the main objective of optimizing the quality of this stream and reducing the costs charged to the refinery, a dynamic mass balance was developed nd implemented for ammonia and polar oil and grease (O&G) contamination in the wastewater circuit. The inadequate routing of sour gas from the sour water stripping unit and the kerosene caustic washing unit, were identified respectively as the major source of ammonia and polar substances present in the industrial wastewater effluent. For the O&G content, a predictive model was developed for the kerosene caustic washing unit, following the Projection to Latent Structures (PLS) approach. Comparison between analytical data for ammonia and polar O&G concentrations in refinery wastewater originating from the Dissolved Air Flotation (DAF) effluent and the model predictions of the dynamic mass balance calculations are in a very good agreement and highlights the dominant impact of the identified streams for the wastewater contamination levels. The ammonia contamination problem was solved by rerouting the sour gas through an existing clogged line with ammonia salts due to a non-insulated line section, while for the O&G a dynamic mass balance was implemented as an online tool, which allows for prevision of possible contamination situations and taking the required preventive actions, and can also serve as a basis for establishing relationships between the O&G contamination in the refinery wastewater with the properties of the refined crude oils and the process operating conditions. The PLS model developed could be of great asset in both optimizing the existing and designing new refinery wastewater treatment units or reuse schemes. In order to find a possible treatment solution for the spent caustic problem, an on-site pilot plant experiments for NaOH recovery from the refinery kerosene caustic washing unit effluent using an alkaline-resistant nanofiltration (NF) polymeric membrane were performed in order to evaluate its applicability for treating these highly alkaline and contaminated streams. For a constant operating pressure and temperature and adequate operating conditions, 99.9% of oil and grease rejection and 97.7% of chemical oxygen demand (COD) rejection were observed. No noticeable membrane fouling or flux decrease were registered until a volume concentration factor of 3. These results allow for NF permeate reuse instead of fresh caustic and for significant reduction of the wastewater contamination, which can result in savings of 1.5 M€ per year at the current prices for the largest Portuguese oil refinery. The capital investments needed for implementation of the required NF membrane system are less than 10% of those associated with the traditional wet air oxidation solution of the spent caustic problem. The operating costs are very similar, but can be less than half if reusing the NF concentrate in refinery pH control applications. The payback period was estimated to be 1.1 years. Overall, the pilot plant experimental results obtained and the process economic evaluation data indicate a very competitive solution through the proposed NF treatment process, which represents a highly promising alternative to conventional and existing spent caustic treatment units.