14 resultados para Impala, Hadoop, Big Data, HDFS, Social Business Intelligence, SBI, cloudera
Resumo:
A importância dos sistemas de data warehousing e business intelligence é cada vez mais pronunciada, no sentido de dotar as organizações com a capacidade de guardar, explorar e produzir informação de valor acrescido para os seus processos de tomada de decisão. Esta realidade é claramente aplicável aos sectores da administração pública portuguesa e, muito em particular, aos organismos com responsabilidades centrais no Ministério da Saúde. No caso dos Serviços Partilhados do Ministério da Saúde (SPMS), que tem como missão prover o SNS de sistemas centrais de business intelligence, o apelo dos seus clientes, para que possam contar com capacidades analíticas nos seus sistemas centrais, tem sido sentido de forma muito acentuada. Todavia, é notório que, tanto os custos, como a complexidade, de grande parte destes projetos têm representado uma séria ameaça à sua adoção e sucesso. Por um lado, a administração pública tem recebido um forte encorajamento para integrar e adotar soluções de natureza open source (modelo de licenciamento gratuito), para os seus projetos de sistemas de informação. Por outro lado, temos vindo a assistir a uma vaga de aceitação generalizada de novas metodologias de desenvolvimento de projetos informáticos, nomeadamente no que diz respeito às metodologias Agéis, que se assumem como mais flexíveis, menos formais e com maior grau de sucesso. No sentido de averiguar da aplicabilidade do open source e das metodologias Ágeis aos sistemas de business intelligence, este trabalho documenta a implementação de um projeto organizacional para a SPMS, com recurso a ferramentas open source de licenciamento gratuito e através de uma metodologia de desenvolvimento de natureza Ágil.
Resumo:
A Internet das Coisas tal como o Big Data e a análise dos dados são dos temas mais discutidos ao querermos observar ou prever as tendências do mercado para as próximas décadas, como o volume económico, financeiro e social, pelo que será relevante perceber a importância destes temas na atualidade. Nesta dissertação será descrita a origem da Internet das Coisas, a sua definição (por vezes confundida com o termo Machine to Machine, redes interligadas de máquinas controladas e monitorizadas remotamente e que possibilitam a troca de dados (Bahga e Madisetti 2014)), o seu ecossistema que envolve a tecnologia, software, dispositivos, aplicações, a infra-estrutura envolvente, e ainda os aspetos relacionados com a segurança, privacidade e modelos de negócios da Internet das Coisas. Pretende-se igualmente explicar cada um dos “Vs” associados ao Big Data: Velocidade, Volume, Variedade e Veracidade, a importância da Business Inteligence e do Data Mining, destacando-se algumas técnicas utilizadas de modo a transformar o volume dos dados em conhecimento para as empresas. Um dos objetivos deste trabalho é a análise das áreas de IoT, modelos de negócio e as implicações do Big Data e da análise de dados como elementos chave para a dinamização do negócio de uma empresa nesta área. O mercado da Internet of Things tem vindo a ganhar dimensão, fruto da Internet e da tecnologia. Devido à importância destes dois recursos e á falta de estudos em Portugal neste campo, com esta dissertação, sustentada na metodologia do “Estudo do Caso”, pretende-se dar a conhecer a experiência portuguesa no mercado da Internet das Coisas. Visa-se assim perceber quais os mecanismos utilizados para trabalhar os dados, a metodologia, sua importância, que consequências trazem para o modelo de negócio e quais as decisões tomadas com base nesses mesmos dados. Este estudo tem ainda como objetivo incentivar empresas portuguesas que estejam neste mercado ou que nele pretendam aceder, a adoptarem estratégias, mecanismos e ferramentas concretas no que diz respeito ao Big Data e análise dos dados.
Resumo:
Web 2.0 software in general and wikis in particular have been receiving growing attention as they constitute new and powerful tools, capable of supporting information sharing, creation of knowledge and a wide range of collaborative processes and learning activities. This paper introduces briefly some of the new opportunities made possible by Web 2.0 or the social Internet, focusing on those offered by the use of wikis as learning spaces. A wiki allows documents to be created, edited and shared on a group basis; it has a very easy and efficient markup language, using a simple Web browser. One of the most important characteristics of wiki technology is the ease with which pages are created and edited. The facility for wiki content to be edited by its users means that its pages and structure form a dynamic entity, in permanent evolution, where users can insert new ideas, supplement previously existing information and correct errors and typos in a document at any time, up to the agreed final version. This paper explores wikis as a collaborative learning and knowledge-building space and its potential for supporting Virtual Communities of Practice (VCoPs). In the academic years (2007/8 and 2008/9), students of the Business Intelligence module at the Master's programme of studies on Knowledge Management and Business Intelligence at Instituto Superior de Estatistica e Gestao de Informacao of the Universidade Nova de Lisboa, Portugal, have been actively involved in the creation of BIWiki - a wiki for Business Intelligence in the Portuguese language. Based on usage patterns and feedback from students participating in this experience, some conclusions are drawn regarding the potential of this technology to support the emergence of VCoPs; some provisional suggestions will be made regarding the use of wikis to support information sharing, knowledge creation and transfer and collaborative learning in Higher Education.
Resumo:
Em Portugal Continental a problemática das listas de inscritos para cirurgia e os seus tempos de espera são matérias que preocupam a sociedade portuguesa desde o início da década de noventa, do século XX. Atualmente as ferramentas de business intelligence ganham cada vez maior importância nas organizações inseridas num contexto mais complexo, competitivo e que exige respostas rápidas, adequadas e em constante mudança. O projeto desenvolvido consiste na implementação de uma aplicação de business intelligence, na Unidade Central de Gestão de Inscritos para Cirurgia, sedeada na Administração Central do Sistema de Saúde, I.P., que apoie a gestão das listas de inscritos para cirurgia de forma mais atempada, com maior qualidade e rigor, e com benefícios inquestionáveis para os utentes. Este projeto visa a monitorização de indicadores basilares; melhoria do controlo do desempenho dos hospitais; comparação entre os valores estabelecidos para determinados indicadores e os desvios verificados; simulação do impacto de algumas medidas, na lista de inscritos para cirurgia, antes da sua implementação; e facultar informação que permita adequar, a todo o momento, a oferta à procura, em determinadas patologias cirúrgicas. Os objetivos do projeto, definidos à priori, foram concretizados na sua totalidade, tendo sido a aplicação concluída com sucesso. Sugere-se, como ações futuras, acrescer novos indicadores e mais dimensões de análise à aplicação desenvolvida no âmbito deste projeto, alargando a capacidade de análise da Unidade Central de Gestão de Inscritos para Cirurgia, com inerente aumento da sua competência de gestão da Lista de Inscritos para Cirurgia em Portugal Continental.
Resumo:
This work project is based on the MIES (Map of Innovation and Social Entrepreneurship in Portugal) database and it aims to understand the characteristics of social business models in the context of the portuguese market, by determining whether they follow the proposed characteristics by John Elkington and Pamela Hartigan, and then adding to their matrix. Furthermore, it tries to determine success patterns by comparing a group of successful social ventures with a group of less successful ones, with the objective of increasing the knowledge of social entrepreneurship as it applies to Portugal and provide a framework for future study.
Resumo:
Atualmente o setor segurador enfrenta diversas dificuldades, não só pela crise económica internacional e pelo mercado cada vez mais competitivo, como também pelas exigências impostas pela entidade reguladora - Instituto de Seguros de Portugal (ISP). Desta forma, apenas as seguradoras que consigam monitorizar os seus riscos, adequando os prémios praticados, conseguirão sobreviver. A forma de o fazer é através de uma adequada tarifação. Neste contexto de elevada instabilidade, as plataformas de Business Intelligence (BI) têm vindo a desempenhar um papel cada vez mais importante no processo de tomada de decisão, nomeadamente, o Business Analytics (BA), que proporciona os métodos e ferramentas de análise. O objetivo deste projeto é desenvolver um protótipo de solução de BA que forneça os inputs necessários ao processo de tomada de decisão, através da monitorização da tarifa em vigor e da simulação do impacto da introdução de uma nova tarifa. A solução desenvolvida apenas abrange a tarifa de responsabilidade civil automóvel (RCA). Ao nível das ferramentas analíticas, o foco foi a análise visual, nomeadamente a construção de dashboards, onde se inclui a análise de sensibilidade ou what-if analysis (WIF). A motivação para o desenvolvimento deste projeto foi a constatação de inexistência de soluções para este fim nos ambientes profissionais em que estive envolvido.
Resumo:
As nonprofits do not have access to the same capital markets as for-profit enterprises, organizations usually scramble for funding to keep up with their mission. This scenario can be changed through the use of the right financial engineering. This Work Project aims at studying an innovative financing mechanism based on the concept of quasi-equity for organizations devoted to social ends to cope with their capital needs. A quasi-equity investment model is built for the Portuguese social business SPEAK, and an in-depth assessment of its current financial, organizational and impact situations is conducted. This is a pioneer case study in Portugal.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Spatial analysis and social network analysis typically take into consideration social processes in specific contexts of geographical or network space. The research in political science increasingly strives to model heterogeneity and spatial dependence. To better understand and geographically model the relationship between “non-political” events, streaming data from social networks, and political climate was the primary objective of the current study. Geographic information systems (GIS) are useful tools in the organization and analysis of streaming data from social networks. In this study, geographical and statistical analysis were combined in order to define the temporal and spatial nature of the data eminating from the popular social network Twitter during the 2014 FIFA World Cup. The study spans the entire globe because Twitter’s geotagging function, the fundamental data that makes this study possible, is not limited to a geographic area. By examining the public reactions to an inherenlty non-political event, this study serves to illuminate broader questions about social behavior and spatial dependence. From a practical perspective, the analyses demonstrate how the discussion of political topics fluсtuate according to football matches. Tableau and Rapidminer, in addition to a set basic statistical methods, were applied to find patterns in the social behavior in space and time in different geographic regions. It was found some insight into the relationship between an ostensibly non-political event – the World Cup - and public opinion transmitted by social media. The methodology could serve as a prototype for future studies and guide policy makers in governmental and non-governmental organizations in gauging the public opinion in certain geographic locations.
Resumo:
In the recent past, hardly anyone could predict this course of GIS development. GIS is moving from desktop to cloud. Web 2.0 enabled people to input data into web. These data are becoming increasingly geolocated. Big amounts of data formed something that is called "Big Data". Scientists still don't know how to deal with it completely. Different Data Mining tools are used for trying to extract some useful information from this Big Data. In our study, we also deal with one part of these data - User Generated Geographic Content (UGGC). The Panoramio initiative allows people to upload photos and describe them with tags. These photos are geolocated, which means that they have exact location on the Earth's surface according to a certain spatial reference system. By using Data Mining tools, we are trying to answer if it is possible to extract land use information from Panoramio photo tags. Also, we tried to answer to what extent this information could be accurate. At the end, we compared different Data Mining methods in order to distinguish which one has the most suited performances for this kind of data, which is text. Our answers are quite encouraging. With more than 70% of accuracy, we proved that extracting land use information is possible to some extent. Also, we found Memory Based Reasoning (MBR) method the most suitable method for this kind of data in all cases.
Resumo:
This project attempts to provide an in-depth competitive assessment of the Portuguese indoor location-based analytics market, and to elaborate an entry-pricing strategy for Business Intelligence Positioning System (BIPS) implementation in Portuguese shopping centre stores. The role of industry forces and company’s organizational resources platform to sustain company’s competitive advantage was explored. A customer value-based pricing approach was adopted to assess BIPS value to retailers and maximize Sonae Sierra profitability. The exploratory quantitative research found that there is a market opportunity to explore every store area types with tailored proposals, and to set higher-than-tested membership fees to allow a rapid ROI, concluding there are propitious conditions for Sierra to succeed in BIPS store’s business model in Portugal.
Resumo:
In the mid-twentieth century, Portugal took the first big step towards social awareness of the Safety and Health at Work. Still later, the International Labour Organization and the World Health Organization were responsible for setting global guidelines that clarified the States for the way forward in inguito of safeguarding the common interests of workers, businesses and the state. All workers should be covered by the rules governing matters relating to Safety, imperative requirements established in the Constitution of the Portuguese Republic. These also include those soldiers from National Guard who, in contemporary social conjecture face in their everyday life situations worthy of heightened risk aquidade. Ensure the identification of risk factors to which they are exposed, is, first, a big boost in the way of preserving the safety of these employees, who daily selflessly and under the most adverse working conditions fulfill the mission of the Guarda Nacional Republicana. Adverse weather conditions, and violence at work are two examples of risk factors to which the military Guard are daily exposed, and hence arise many days of absence from the workplace. The purpose of this study is to identify the main risk factors to which the military from GNR are exposed during dismounted patrols, and also provide solutions on ways to mitigate and manage the risks presented. The cognitive distance traveled, throughout this study led us to demonstrate that it has been done by the GNR chain of Command, a huge effort to ensure through various forms (including emphasize the new Regulation of Uniforms), the resolution of the main factors that may jeopardize the integrity of the patrolmen, betting this Institution in the protection of the military that compose it, and the prevention of accidents at work through training and systematic monitoring that superiors expend with its employees.
Resumo:
Actualmente, com a massificação da utilização das redes sociais, as empresas passam a sua mensagem nos seus canais de comunicação, mas os consumidores dão a sua opinião sobre ela. Argumentam, opinam, criticam (Nardi, Schiano, Gumbrecht, & Swartz, 2004). Positiva ou negativamente. Neste contexto o Text Mining surge como uma abordagem interessante para a resposta à necessidade de obter conhecimento a partir dos dados existentes. Neste trabalho utilizámos um algoritmo de Clustering hierárquico com o objectivo de descobrir temas distintos num conjunto de tweets obtidos ao longo de um determinado período de tempo para as empresas Burger King e McDonald’s. Com o intuito de compreender o sentimento associado a estes temas foi feita uma análise de sentimentos a cada tema encontrado, utilizando um algoritmo Bag-of-Words. Concluiu-se que o algoritmo de Clustering foi capaz de encontrar temas através do tweets obtidos, essencialmente ligados a produtos e serviços comercializados pelas empresas. O algoritmo de Sentiment Analysis atribuiu um sentimento a esses temas, permitindo compreender de entre os produtos/serviços identificados quais os que obtiveram uma polaridade positiva ou negativa, e deste modo sinalizar potencias situações problemáticas na estratégia das empresas, e situações positivas passíveis de identificação de decisões operacionais bem-sucedidas.
Resumo:
This dissertation is aimed at helping organizations that implemented a Business Intelligence (BI) system without documenting to identify the reasons for the indicators choice either in the conception phase of the project or other. The example taken to present the methodology is a fictitious case study of an organization named BestBread. The aim of this dissertation is to demonstrate not only the necessary indicators in a report but also to describe why they are needed through a business goal representation. This dissertation approach focus mainly in using two methodologies, a simplified notation of the Business Intelligence model (BIM) and a systematic approach that aims to justify BI indicators through modelling report goals. This approach provides guidance to organizations that already implemented a BI tool by presenting a method to compare intuitive and systematic selection of indicators with the BI system existing indicators. The approach is applicable to define in a report its significant indicators. The steps needed to be executed are the following: 1- Model business goals; 2- Select indicators through an intuitive perspective; 3- Verify the indicators existence identified in the intuitive perspective; 4- Select indicators through a systematic perspective; 5- Verify the indicators existence identified in the systematic perspective; 6- Make a global comparison. The dissertation approach allowed an easier way to identify and explain the purpose of indicators to be used in a report. Also, the methodology presented could help the BI deployment phase to be quicker since users would be able to visualise through the representations the evaluation that the indicators could evoke in their business goals. Therefore, it could improve the use of the BI tool, its acceptance and maybe even users’ satisfaction with the tool.