21 resultados para End-of-Pipe
Resumo:
Shape Memory Alloy (SMA) Ni-Ti films have attracted much interest as functional and smart materials due to their unique properties. However, there are still important issues unresolved like formation of film texture and its control as well as substrate effects. Thus, the main challenge is not only the control of the microstructure, including stoichiometry and precipitates, but also the identification and control of the preferential orientation since it is a crucial factor in determining the shape memory behaviour. The aim of this PhD thesis is to study the optimisation of the deposition conditions of films of Ni-Ti in order to obtain the material fully crystallized at the end of the deposition, and to establish a clear relationship between the substrates and texture development. In order to achieve this objective, a two-magnetron sputter deposition chamber has been used allowing to heat and to apply a bias voltage to the substrate. It can be mounted into the six-circle diffractometer of the Rossendorf Beamline (ROBL) at the European Synchrotron Radiation Facility (ESRF), Grenoble, France, enabling an in-situ characterization by X-ray diffraction(XRD) of the films during their growth and annealing. The in-situ studies enable us to identify the different steps of the structural evolution during deposition with a set of parameters as well as to evaluate the effect of changing parameters on the structural characteristics of the deposited film. Besides the in-situ studies, other complementary ex-situ characterization techniques such as XRD at a laboratory source, Rutherford backscattering spectroscopy(RBS), Auger electron spectroscopy (AES), cross-sectional transmission electron microscopy (X-TEM), scanning electron microscopy (SEM), and electrical resistivity (ER) measurements during temperature cycling have been used for a fine structural characterization. In this study, mainly naturally and thermally oxidized Si(100) substrates, TiN buffer layers with different thicknesses (i.e. the TiN topmost layer crystallographic orientation is thickness dependent) and MgO(100) single crystals were used as substrates. The chosen experimental procedure led to a controlled composition and preferential orientation of the films. The type of substrate plays an important role for the texture of the sputtered Ni-Ti films and according to the ER results, the distinct crystallographic orientations of the Ni-Ti films influence their phase transformation characteristics.
Resumo:
Thesis for the Degree of Master of Science in Biotechnology Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Paper presented at the 8th European Conference on Knowledge Management, Barcelona, 6-7 Sep. 2008 URL: http://www.academic-conferences.org/eckm/eckm2007/eckm07-home.htm
Resumo:
Journal of Bacteriology (Nov 2007) 8371-8376
Resumo:
The extensional process affecting Iberia during the Triassic and Jurassic times change from the end of the Cretaceous and, throughout the Palaeocene, the displacement between the African and European plates was clearly convergent and part of the future Internal Zone of the Betic Cordillera was affected. To the west, the Atlantic continued to open as a passive margin and, to the north, no significant deformation occurred. During the Eocene, the entire Iberian plate was subjected to compression. which caused major deformations in the Pyrenees and also in the Alpujarride and Nevado-Filabride, Internal Betic, complexes. In the Oligocene continued this situation, but in addition, the new extensional process ocurring in the western Mediterranean area, together with the constant eastward drift of Iberia due to Atlantic opening, compressed the eastern sector of Iberia, giving rise to the structuring of the Iberian Cordillera. The Neogene was the time when the Betic Cordillera reached its fundamental features with the westward displacement of the Betic-Rif Internal Zone, expelled by the progressive opening of the Algerian Basin, opening prolonged till the Alboran Sea. From the late Miocene onwards, all Iberia was affected by a N-S to NNW-SSE compression, combined in many points by a near perpendicular extension. Specially in eastern and southern Iberia a radial extension superposed these compression and extension.
Resumo:
The present work follows a stratigraphic model for the marine Neogene of Portugal based on the definition of three main marine sedimentary cycles. Conceptually the I, II and III Neogene Cycles can be defined as 2nd order sedimentary sequences with duration ranging from 5 to 8 Ma. The I Neogene Cycle is fully represented only in the Lower Tagus Basin. Ranging from the Early Aquitanian to the Late Burdigalian the I Neogene Cycle testify a transgressive episode in the region of Lisbon and Setúbal Peninsula. Rapid lateral facies variations suggest a shallowmarine basin. This cycle ends with an important Late Burdigalian tectonic compressive event expressed by uplift of the surrounding areas and deformation affecting the Early Miocene deposits of the Arrábida Chain. The II Neogene Cycle includes thick sedimentary sequences covering Paleozoic and Mesozoic formations in the Algarve and Alvalade-Melides regions and it extends as far north as Santarém in the Lower Tagus Basin. Mainly controlled by global eustasy, it was generated by the important positive eustatic trend that characterized the Middle Miocene worldwide to which the Portuguese continental margin acted more or less passively. This cycle ended with a second and the most important compression event starting after the end of the Serravallian affecting the entire Portuguese onshore and shelf areas. This led to an important depositional hiatus of marine sediments for more than 2.5 Ma. During the Early and the Middle Tortonian occurred the clockwise rotation of the Guadalquivir Basin. The thickmarine units deposited afterwards in this basin produced a litostatic load, which seems to have induced subsidence farther west resuming the Neogene marine sedimentation in the Cacela region (Eastern Algarve), during the Late Tortonian. This marks the beginning of the III Neogene Cycle. To the north, in the Sado Basin (Alvalade-Melides region), a similar depositional sequence starts its sedimentation during the Messinian. Further north, in the Pombal-Caldas da Rainha region, marine sedimentation started during the Late Pliocene (Piacenzian). The migration in time, from south to north for the beginning of the marine sedimentation of this cycle is interpreted as reflecting a visco-elastic propagation of the deformation from the Betic chain northwards.
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Systems Biology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertation presented to obtain a Doctoral Degree in Biology by Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Tese de mestrado em Antropologia, especialização natureza e conservação
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Dissertation for applying to a Master’s Degree in Molecular Genetics and Biomedicine submitted to the Sciences and Technology Faculty of New University of Lisbon
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente