12 resultados para Educational algorithm
Resumo:
IEEE International Symposium on Circuits and Systems, pp. 724 – 727, Seattle, EUA
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
Diffusion Kurtosis Imaging (DKI) is a fairly new magnetic resonance imag-ing (MRI) technique that tackles the non-gaussian motion of water in biological tissues by taking into account the restrictions imposed by tissue microstructure, which are not considered in Diffusion Tensor Imaging (DTI), where the water diffusion is considered purely gaussian. As a result DKI provides more accurate information on biological structures and is able to detect important abnormalities which are not visible in standard DTI analysis. This work regards the development of a tool for DKI computation to be implemented as an OsiriX plugin. Thus, as OsiriX runs under Mac OS X, the pro-gram is written in Objective-C and also makes use of Apple’s Cocoa framework. The whole program is developed in the Xcode integrated development environ-ment (IDE). The plugin implements a fast heuristic constrained linear least squares al-gorithm (CLLS-H) for estimating the diffusion and kurtosis tensors, and offers the user the possibility to choose which maps are to be generated for not only standard DTI quantities such as Mean Diffusion (MD), Radial Diffusion (RD), Axial Diffusion (AD) and Fractional Anisotropy (FA), but also DKI metrics, Mean Kurtosis (MK), Radial Kurtosis (RK) and Axial Kurtosis (AK).The plugin was subjected to both a qualitative and a semi-quantitative analysis which yielded convincing results. A more accurate validation pro-cess is still being developed, after which, and with some few minor adjust-ments the plugin shall become a valid option for DKI computation
Resumo:
The mobile IT era is here, it is still growing and expanding at a steady rate and, most of all, it is entertaining. Mobile devices are used for entertainment, whether social through the so-called social networks, or private through web browsing, video watching or gaming. Youngsters make heavy use of these devices, and even small children show impressive adaptability and skill. However not much attention is directed towards education, especially in the case of young children. Too much time is usually spent in games which only purpose is to keep children entertained, time that could be put to better use such as developing elementary geometric notions. Taking advantage of this pocket computer scenario, it is proposed an application geared towards small children in the 6 – 9 age group that allows them to consolidate knowledge regarding geometric shapes, forming a stepping stone that leads to some fundamental mathematical knowledge to be exercised later on. To achieve this goal, the application will detect simple geometric shapes like squares, circles and triangles using the device’s camera. The novelty of this application will be a core real-time detection system designed and developed from the ground up for mobile devices, taking into account their characteristic limitations such as reduced processing power, memory and battery. User feedback was be gathered, aggregated and studied to assess the educational factor of the application.
Resumo:
The aim of this work project is to analyze the current algorithm used by EDP to estimate their clients’ electrical energy consumptions, create a new algorithm and compare the advantages and disadvantages of both. This new algorithm is different from the current one as it incorporates some effects from temperature variations. The results of the comparison show that this new algorithm with temperature variables performed better than the same algorithm without temperature variables, although there is still potential for further improvements of the current algorithm, if the prediction model is estimated using a sample of daily data, which is the case of the current EDP algorithm.
Resumo:
Contém resumo
Resumo:
Ship tracking systems allow Maritime Organizations that are concerned with the Safety at Sea to obtain information on the current location and route of merchant vessels. Thanks to Space technology in recent years the geographical coverage of the ship tracking platforms has increased significantly, from radar based near-shore traffic monitoring towards a worldwide picture of the maritime traffic situation. The long-range tracking systems currently in operations allow the storage of ship position data over many years: a valuable source of knowledge about the shipping routes between different ocean regions. The outcome of this Master project is a software prototype for the estimation of the most operated shipping route between any two geographical locations. The analysis is based on the historical ship positions acquired with long-range tracking systems. The proposed approach makes use of a Genetic Algorithm applied on a training set of relevant ship positions extracted from the long-term storage tracking database of the European Maritime Safety Agency (EMSA). The analysis of some representative shipping routes is presented and the quality of the results and their operational applications are assessed by a Maritime Safety expert.