27 resultados para Bacillus thunringiensis
Resumo:
Journal of Bacteriology (Out 2010) 5312-5318
Resumo:
Microbiology 154 (2008) 2719-2729
Resumo:
Journal of Bacteriology (Junho 2008) 4272-4280
Resumo:
Acta Crystallographica F64 (2008) 636-638
Resumo:
Journal of Bacteriology (Nov 2007) 8371-8376
Resumo:
Nucleic Acid Research (2007) Vol.37 N. 14 4755-4766
Resumo:
Journal of Bacteriology (Apr 2006) 3024-3036
Resumo:
Dissertation presented to obtain the Ph.D. degree in “Biology” at the Institute of Chemical and Biological Technology of the New University of Lisbon
Resumo:
Plos Genetics, 5(7): ARTe1000566
Resumo:
FEBS journal, Volume 278, Issue 14, pages 2511-2524, July 2011
Resumo:
RESUMO: A esporulação em Bacillus subtilis é controlada por uma cascata de factores sigma da polimerase do RNA. F e E controlam os estágios precoces do desenvolvimento no pré-esporo e na célula mãe, respectivamente. Numa fase intermédia da diferenciação, quando a célula mãe acaba por envolver o pré-esporo, F é substituído por G e E é substituído por K. Vários mecanismos asseguram que a actividade dos diferentes factores sigma seja confinada a uma janela temporal precisa na célula adequada. Neste estudo, investigámos a função de um factor anti-G, designado por CsfB. Mostramos que para além da sua função de inibição da actividade do factor G em células pré-divisionais, CsfB é também necessário na célula mãe num estágio tardio do desenvolvimento. Mostramos que a expressão de csfB é activada na célula mãe a partir de um promotor dependente de K. Contudo, demonstramos que CsfB interage directamente com E e não com K, e que CsfB é suficiente para inibir a actividade transcricional dependente de E em células vegetativas de B. subtilis. Propomos que CsfB contribui para reduzir o período dependente de E, na linha de expressão genética da célula mãe, desse modo reduzindo a sobreposição entre os regulões E e K e aumentado a fidelidade do processo de desenvolvimento. Uma segunda proteína, YabK, partilha semelhança estrutural com CsfB. YabK é produzida no pré-esporo sob o comando de F, e é necessária para a esporulação. YabK contribui para a transição F/G no programa genético do pré-esporo, porque uma mutação que torna F sensível a CsfB ultrapassa parcialmente a função de YabK na esporulação. No entanto, YabK e CsfB funcionam por mecanismos diferentes, uma vez que YabK não liga directamente a F.---------ABSTRACT: Gene expression during spore development in Bacillus subtilis is governed by a cascade of RNA polymerase sigma factors. F and E control the early stages of development in the forespore and in the mother cell, respectively. At an intermediate stage in the differentiation process, when the larger mother cell finishes engulfment of the smaller forespore, F is replaced by G and E is replaced by K. Several mechanisms ensure the proper timing of activation of the cell type-specific sigma factors. Here, we have investigated the funtion of an anti-sigma G factor, called CsfB. We show here that in addition to its role in inhibiting G in pre-divisional cells, CsfB is also required in the mother cell at a late stage in development. We show that the expression of csfB is activated in the mother cell from a K-specific promoter. However, we demonstrate that CsfB binds directly to E but not to K in a yeast two-hybrid assay, and that CsfB is sufficient to inhibit E-dependent transcriptional activity in vegetative cells of B. subtilis. We posit that CsfB contributes to shutting off the early, E-controlled period in the mother cell line of gene expression, thus reducing the overlap between deployment of the E and K regulons and increasing the fidelity of the developmental process. A second protein, YabK, shares structural similarity with CsfB. YabK is produced in the forespore under F control, and is required for efficient sporulation. YabK contributes to the transition from the F- to the G-dependent period of gene expression, because a mutation that renders F sensitive to CsfB partially bypasses the need for YabK. Yet, YabK and CsfB must function in the control of sigma factor activity by different mechanisms because YabK does not bind directly to F.
Resumo:
Resumo: RodZ é um componente do sistema morfogenético das células bacterianas. É uma proteína transmembranar que localiza em bandas ao longo do eixo longitudinal da célula. Em Bacillus subtilis, RodZ consiste numa porção citoplasmática, RodZn, e em uma parte extra-citoplasmática, RodZc. RodZn contém um domínio em helixturn- helix (HTH), enquanto que RodZc pode ser dividido num domínio coiled-coil e num domínio terminal C, de função desconhecida. Um segmento transmembranar (TM) único separa RodZn de RodZc. A eliminação de rodZ causa alongamento do nucleóide e leva à produção de células polares nucleadas. Aqui, mostramos que RodZn é estruturado, estável e em hélice α. Descobrimos que as substituições Y32A e L33A na suposta hélice de reconhecimento (3) do motivo HTH, bem como as substituições Y49A e F53A, fora do motivo HTH (4), causam divisão assimétrica, mas apenas as últimas levam à deslocalização sub-celular de RodZ. Sugerimos que as hélices 3 e 4 são utilizadas para uma interacção proteína-proteína ou proteína- DNA essencial para divisão celular enquanto que 4 deve contactar um componente do citosqueleto, possivelmente MreB, uma vez que a correcta localização sub-celular de RodZ depende desta proteína. Em todos os mutantes as células polares são anucleadas, pelo que concluímos que o alongamento do nucleóide não é um prérequisito para divisão assimétrica. RodZc é largamente não estruturado mas com conteúdo de folha , sendo estabilizado pelo domínio coiled-coil. Mostramos uma relação homóloga entre RodZc e a bomba de transporte Na+/Ca2+ NCX1 e identificámos dois resíduos no domínio C, G265 e N275, essenciais para a manutenção da forma celular. Estes resíduos fazem parte de um motivo em gancho que pode actuar como um local de interacção com um ligando desconhecido. RodZn e RodZc são monoméricos em solução. Contudo, na membrana, RodZ interage consigo própria num sistema de dois híbridos (Split-Ubiquitin) em levedura, sugerindo que possa formar multímeros in vivo.-----------ABSTRACT: RodZ is a transmembrane component of the bacterial core morphogenic apparatus. RodZ localizes in bands long the longitudinal axis of the cell, and it is though to functionally link the cell wall to the actin cytoskeleton. In Bacillus subtilis, RodZ consists of a cytoplasmic moiety, RodZn, and an extracytoplasmic moiety, RodZc. RodZn contains a predicted helix-turn-helix domain, whereas RodZc is thought to contain a coiled-coil region and a terminal C domain of unknown function. A single transmembrane domain separates RodZn from RodZc. Deletion of rodZ causes elongation of the nucleoid and leads to the production of polar minicells containing DNA. Here, we have studied the structure and function of RodZn and RodZc. We show that RodZn is a stable, folded, -helical domain. We discovered that the Y32A and L33A substitutions within the presumptive recognition helix (3) of the HTH motif, as well as the Y49A and F53A substitutions outside of the HTH motif (in 4) cause asymmetric cell division. However, only the substitutions in 4 cause sub-celular delocalization of RodZ. We suggest that 3 and 4 are used for a protein-protein or protein-DNA interaction important for cell division, whereas 4 is likely to contact a cytoskeletal component, presumably MreB. The polar cells formed by all the mutants are anucleate. We conclude that nucleoid elongation is not a prerequisite for asymmetric division. RodZc appears to be a largely unstructured domain, with some -sheet content, and is stabilized by the coiled-coil region. We show a homology relationship between RodZc and the NCX1 Na+/Ca2+ transporter and we found two residues within the C domain, G265 and N275, that are important for cell shape determination. These residues are predicted to be essential determinants of a claw-like motif, which may act as a binding site for an unknown ligand. Both the isolated RodZn and RodZc proteins are monomeric in solution. However, because full-length RodZ interacts with itself in a split-ubiquitin yeast two-hybrid assay, we suggest that it may dimerize or form higher order multimers in vivo.
Resumo:
A thesis to obtain a Master degree in Structural and Functional Biochemistry
Resumo:
Dissertation presented to obtain the Ph.D degree in Biochemistry.
Resumo:
Dissertação para obtenção do Grau de Mestre em Tecnologia e Segurança Alimentar