3 resultados para Arduino (Controlador programável)
Resumo:
O acionamento eletrónico de motores desempenha um papel cada vez mais importante nos transportes e mobilidade, devido às inúmeras aplicações, entre as quais o controlo de velocidade e direção dos motores das cadeiras de rodas elétricas. No entanto, as soluções disponíveis no mercado apresentam um custo elevado, e consequentemente são inacessíveis para muitas pessoas. O objetivo desta dissertação é projetar o sistema de acionamento eletrónico para um veículo unipessoal de mobilidade urbana, de acordo com os requisitos estabelecidos, e realizar um protótipo funcional com o mínimo custo possível. O sistema estará subdividido em quatro módulos: interface com o utilizador, controlador central, sistema de potência e atuadores. A sua implementação será feita através da programação num Arduino, o sistema de potência utiliza drivers, e o controlo de velocidade dos motores CC será efetuado por PWM. O sistema de controlo foi implementado de uma forma modular e parametrizada para que numa próxima fase se possa afinar os parâmetros de controlo do movimento adequando o veículo para diferentes condições de operação. Numa perspetiva futura, pretende-se que este veículo unipessoal de mobilidade urbana seja comercializado de forma económica e possibilite a mobilidade total em meio urbano a pessoas com limitações de ordem motora.
Resumo:
Dissertação para obtenção do Grau de Mestre em Energias Renováveis – Conversão Eléctrica e Utilização Sustentáveis
Resumo:
Neste trabalho foi desenvolvido um controlador electrónico de potência capaz de actuar sobre a janela inteligente por forma a permitir a transição do estado opaco para o estado transparente. O controlador foi desenhado com o propósito de ser o único elemento necessário para o funcionamento das janelas inteligentes, evitando assim a utilização de uma parafernália de equipamentos isolados, ligados entre si, para executarem o mesmo propósito. A topologia utilizada para criar este controlador baseou-se num módulo rectificador AC/DC, seguido por um módulo Buck e terminado por um inversor do tipo Boost. Esta topologia permitiu que se alcançasse uma grande amplitude de tensões á saída, as quais variam entre os 0V e os 600V, necessárias para o desenvolvimento das janelas inteligentes. Esta solução foi pensada por forma a permitir, no futuro, o desenvolvimento de um controlador capaz de fazer a transição do estado transparente para opaco e a ligação ao software laboratorial LabView para recolha de dados e interpretação dos mesmos.