10 resultados para 280202 Computer Graphics
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertação para obtenção do Grau de Doutor em Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Os primeiros trabalhos sobre Computer-Supported Cooperative Work surgiram na segunda metade da década de 80, estabelecendo-se um campo de investigação interdisciplinar com enfoque no papel do computador e das tecnologias da comunicação no apoio do trabalho em grupo (Ishii et al., 1994). Ao abordar esta área de investigação torna-se claro que é necessário ter em conta a diversidade dos grupos e das tarefas que estes devem de utilizar, entre outros factores importantes. As implicações desta diversidade são discutidas ao nível concepção de interfaces de groupware, em que um maior envolvimento dos utilizadores nas fases iniciais parece ser necessário, e ao nível dos Sistemas de Apoio à Decisão em Grupo.
Resumo:
Based on the report for the “Project III” unit of the PhD programme on Technology Assessment under the supervision of Prof. António B. Moniz. This report was discussed also at the 2nd Winter School on Technology Assessment held at Universidade Nova de Lisboa, Caparica Campus, Portugal on December 2011.
Resumo:
Based on the report for “Project IV” unit of the PhD programme on Technology Assessment (Doctoral Conference) at Universidade Nova de Lisboa (December 2011). This thesis research has the supervision of António Moniz (FCT-UNL and ITAS-KIT) and Armin Grunwald (Karlsruhe Institute of Technology-ITAS, Germany). Other members of the thesis committee are Mário Forjaz Secca (FCT-UNL) and Femke Nijboer (University of Twente, Netherlands).
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
The Graphics Processing Unit (GPU) is present in almost every modern day personal computer. Despite its specific purpose design, they have been increasingly used for general computations with very good results. Hence, there is a growing effort from the community to seamlessly integrate this kind of devices in everyday computing. However, to fully exploit the potential of a system comprising GPUs and CPUs, these devices should be presented to the programmer as a single platform. The efficient combination of the power of CPU and GPU devices is highly dependent on each device’s characteristics, resulting in platform specific applications that cannot be ported to different systems. Also, the most efficient work balance among devices is highly dependable on the computations to be performed and respective data sizes. In this work, we propose a solution for heterogeneous environments based on the abstraction level provided by algorithmic skeletons. Our goal is to take full advantage of the power of all CPU and GPU devices present in a system, without the need for different kernel implementations nor explicit work-distribution.To that end, we extended Marrow, an algorithmic skeleton framework for multi-GPUs, to support CPU computations and efficiently balance the work-load between devices. Our approach is based on an offline training execution that identifies the ideal work balance and platform configurations for a given application and input data size. The evaluation of this work shows that the combination of CPU and GPU devices can significantly boost the performance of our benchmarks in the tested environments, when compared to GPU-only executions.