8 resultados para 1-ALLYL-3-METHYLIMIDAZOLIUM CHLORIDE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in Chemistry (Physical Chemistry) at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação Apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Ciências da Conservação, especialização em Pintura

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau Mestre em Biotecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is devoted to study the pre-treatment of lignocellulosic biomass, especially wheat straw, by the application of the acidic ionic liquid (IL) such as 1-butyl-3-methylimidazolium hydrogen sulphate. The ability of this IL to hydrolysis and conversion of biomass was scrutinised. The pre-treatment with hydrogen sulphate-based IL allowed to obtain a liquor rich in hemicellulosic sugars, furans and organic acids, and a solid fraction mainly constituted by cellulose and lignin. Quantitative and qualitative analyses of the produced liquors were made by capillary electrophoresis and high-performance liquid chromatography. Pre-treatment conditions were set to produce xylose or furfural. Specific range of temperatures from 70 to 175 °C and residence times from 20.0 to 163.3 min were studied by fixing parameters such as biomass/IL ratio (10 % (w/w)) and water content (1.25 % (w/w)) in the pre-treatment process. Statistical modelling was applied to maximise the xylose and furfural concentrations. For the purpose of reaction condition comparison the severity factor for studied ionic liquid was proposed and applied in this work. Optimum conditions for xylose production were identified to be at 125 °C and 82.1 min, at which 16.7 % (w/w) xylose yield was attained. Furfural was preferably formed at higher pre-treatment temperatures and longer reaction time (161 °C and 104.5 min) reaching 30.7 % (w/w) maximum yield. The influence of water content on the optimum xylose formation was also studied. Pre-treatments with 5 and 10 % (w/w) water content were performed and an increase of 100 % and 140 % of xylose yield was observed, respectively, while the conversion into furfural maintained unchanged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin-lattice Relaxation, self-Diffusion coefficients and Residual Dipolar Couplings (RDC’s) are the basis of well established Nuclear Magnetic Resonance techniques for the physicochemical study of small molecules (typically organic compounds and natural products with MW < 1000 Da), as they proved to be a powerful and complementary source of information about structural dynamic processes in solution. The work developed in this thesis consists in the application of the earlier-mentioned NMR techniques to explore, analyze and systematize patterns of the molecular dynamic behavior of selected small molecules in particular experimental conditions. Two systems were chosen to investigate molecular dynamic behavior by these techniques: the dynamics of ion-pair formation and ion interaction in ionic liquids (IL) and the dynamics of molecular reorientation when molecules are placed in oriented phases (alignment media). The application of NMR spin-lattice relaxation and self-diffusion measurements was applied to study the rotational and translational molecular dynamics of the IL: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]. The study of the cation-anion dynamics in neat and IL-water mixtures was systematically investigated by a combination of multinuclear NMR relaxation techniques with diffusion data (using by H1, C13 and F19 NMR spectroscopy). Spin-lattice relaxation time (T1), self-diffusion coefficients and nuclear Overhauser effect experiments were combined to determine the conditions that favor the formation of long lived [BMIM][BF4] ion-pairs in water. For this purpose and using the self-diffusion coefficients of cation and anion as a probe, different IL-water compositions were screened (from neat IL to infinite dilution) to find the conditions where both cation and anion present equal diffusion coefficients (8% water fraction at 25 ºC). This condition as well as the neat IL and the infinite dilution were then further studied by 13C NMR relaxation in order to determine correlation times (c) for the molecular reorientational motion using a mathematical iterative procedure and experimental data obtained in a temperature range between 273 and 353 K. The behavior of self-diffusion and relaxation data obtained in our experiments point at the combining parameters of molar fraction 8 % and temperature 298 K as the most favorable condition for the formation of long lived ion-pairs. When molecules are subjected to soft anisotropic motion by being placed in some special media, Residual Dipolar Couplings (RDCs), can be measured, because of the partial alignment induced by this media. RDCs are emerging as a powerful routine tool employed in conformational analysis, as it complements and even outperforms the approaches based on the classical NMR NOE or J3 couplings. In this work, three different alignment media have been characterized and evaluated in terms of integrity using 2H and 1H 1D-NMR spectroscopy, namely the stretched and compressed gel PMMA, and the lyotropic liquid crystals CpCl/n-hexanol/brine and cromolyn/water. The influence that different media and degrees of alignment have on the dynamic properties of several molecules was explored. Different sized sugars were used and their self-diffusion was determined as well as conformation features using RDCs. The results obtained indicate that no influence is felt by the small molecules diffusion and conformational features studied within the alignment degree range studied, which was the 3, 5 and 6 % CpCl/n-hexanol/brine for diffusion, and 5 and 7.5 % CpCl/n-hexanol/brine for conformation. It was also possible to determine that the small molecules diffusion verified in the alignment media presented close values to the ones observed in water, reinforcing the idea of no conditioning of molecular properties in such media.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Orgânica

Relevância:

100.00% 100.00%

Publicador:

Resumo:

3-O-methylmannose polysaccharides (MMPs) are cytoplasmic carbohydrates synthesized by mycobacteria, which play important intracellular roles, such as for example in metabolism regulation. An important way to confirm if the inhibition of the synthesis of these polysaccharides will critically affect the survival of mycobacteria is the study of the biosynthetic pathways from these molecules on these microorganisms. The purpose of this work is the efficient synthesis of three saccharides, which are rare cellular precursors from the biosynthesis of the mycobacterial polysaccharides, allowing its study. In order to obtain these molecules, a chemical strategy to connect two precursors was used. This process is called chemical glycosylation and its importance will be highlighted as an important alternative to enzymatic glycosylation. The first objective was the synthesis of the disaccharides Methyl (3-O-methyl-α-D-mannopyranosyl)-(1→4)-3-O-methyl-α-D-mannopyranoside and (3-O-Methyl-α-D-mannopyra- nosyl)-(1→4)-3-O-methyl-(α/β)-D-mannopyranose. The mannose precursors were prepared before the glycosylation reaction. The same mannosyl donor was used in the preparation of both molecules and its efficient synthesis was achieved using a 8 step synthetic route from D-mannose. A different mannosyl acceptor was used in the synthesis of each disaccharide and their syntheses were also efficient, the first one a 4 step synthetic route from α-methyl-D-mannose and the second one as an intermediate from the synthesis of the mannosyl donor. The stereoselective preparation of these disaccharides was performed successfully. The second and last objective of the proposed work was the synthesis of the tetrasaccharide methyl (3-O-methyl-α-D-mannopyranosyl-(1→4)-3-O-methyl-α-D-mannopyra- nosyl-(1→4)-3-O-methyl-α-D-mannopyranosyl-(1→4)-3-O-methyl-α-D-mannopyranoside. The disaccharide acceptor and donor to be linked through a stereoselective glycosidic reaction had to be first synthesized. Several synthetic strategies were studied. Neither the precursors nor the tetrasaccharide were synthesized, but a final promising synthetic route for its preparation has been proposed.