5 resultados para Recovery rooms.
em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal
Resumo:
This project aims to delineate recovery strategies for a Portuguese Bank, as a way to increase its preparedness towards unexpected disruptive events, thus avoiding an operational crisis escalation. For this purpose, Business Continuity material was studied, a risk assessment performed, a business impact analysis executed and new strategic framework for selecting strategies adopted. In the end, a set of recovery strategies were chosen that better represented the Bank’s appetite for risk, and recommendations given for future improvements.
Resumo:
Natural disasters are events that cause general and widespread destruction of the built environment and are becoming increasingly recurrent. They are a product of vulnerability and community exposure to natural hazards, generating a multitude of social, economic and cultural issues of which the loss of housing and the subsequent need for shelter is one of its major consequences. Nowadays, numerous factors contribute to increased vulnerability and exposure to natural disasters such as climate change with its impacts felt across the globe and which is currently seen as a worldwide threat to the built environment. The abandonment of disaster-affected areas can also push populations to regions where natural hazards are felt more severely. Although several actors in the post-disaster scenario provide for shelter needs and recovery programs, housing is often inadequate and unable to resist the effects of future natural hazards. Resilient housing is commonly not addressed due to the urgency in sheltering affected populations. However, by neglecting risks of exposure in construction, houses become vulnerable and are likely to be damaged or destroyed in future natural hazard events. That being said it becomes fundamental to include resilience criteria, when it comes to housing, which in turn will allow new houses to better withstand the passage of time and natural disasters, in the safest way possible. This master thesis is intended to provide guiding principles to take towards housing recovery after natural disasters, particularly in the form of flood resilient construction, considering floods are responsible for the largest number of natural disasters. To this purpose, the main structures that house affected populations were identified and analyzed in depth. After assessing the risks and damages that flood events can cause in housing, a methodology was proposed for flood resilient housing models, in which there were identified key criteria that housing should meet. The same methodology is based in the US Federal Emergency Management Agency requirements and recommendations in accordance to specific flood zones. Finally, a case study in Maldives – one of the most vulnerable countries to sea level rise resulting from climate change – has been analyzed in light of housing recovery in a post-disaster induced scenario. This analysis was carried out by using the proposed methodology with the intent of assessing the resilience of the newly built housing to floods in the aftermath of the 2004 Indian Ocean Tsunami.
Resumo:
Phosphorus (P) is becoming a scarce element due to the decreasing availability of primary sources. Therefore, recover P from secondary sources, e.g. waste streams, have become extremely important. Sewage sludge ash (SSA) is a reliable secondary source of P. The use of SSAs as a direct fertilizer has very restricted legislation due to the presence of inorganic contaminants. Furthermore, the P present in SSAs is not in a plant-available form. The electrodialytic (ED) process is one of the methods under development to recover P and simultaneously remove heavy metals. The present work aimed to optimize the P recovery through a 2 compartment electrodialytic cell. The research was divided in three independent phases. In the first phase, ED experiments were carried out for two SSAs from different seasons, varying the duration of the ED process (2, 4, 6 and 9 days). During the ED treatment the SSA was suspended in distilled water in the anolyte, which was separated from the catholyte by a cation exchange membrane. From both ashes 90% of P was successfully extracted after 6 days of treatment. Regarding the heavy metals removal, one of the SSAs had a better removal than the other. Therefore, it was possible to conclude that SSAs from different seasons can be submitted to ED process under the same parameters. In the second phase, the two SSAs were exposed to humidity and air prior to ED, in order to carbonate them. Although this procedure was not successful, ED experiments were carried out varying the duration of the treatment (2 and 6 days) and the period of air exposure that SSAs were submitted to (7, 14 and 30 days). After 6 days of treatment and 30 days of air exposure, 90% of phosphorus was successfully extracted from both ashes. No differences were identified between carbonated and non-carbonated SSAs. Thus, SSAs that were exposed to the air and humidity, e.g. SSAs stored for 30 days in an open deposit, can be treated under the same parameters as the SSAs directly collected from the incineration process. In the third phase, ED experiments were carried out during 6 days varying the stirring time (0, 1, 2 and 4 h/day) in order to investigate if energy can be saved on the stirring process. After 6 days of treatment and 4 h/day stirring, 80% and 90% of P was successfully extracted from SSA-A and SSA-B, respectively. This value is very similar to the one obtained for 6 days of treatment stirring 24 h/day.
Resumo:
There is a need to develop viable techniques for removal and recovery organic and inorganic compounds from environmental matrices, due to their ecotoxicity, regulatory obligations or potential supplies as secondary materials. In this dissertation, electro –removal and –recovery techniques were applied to five different contaminated environmental matrices aiming phosphorus (P) recovery and/or contaminants removal. In a first phase, the electrokinetic process (EK) was carried out in soils for (i) metalloids and (ii) organic contaminants (OCs) removal. In the case of As and Sb mine contaminated soil, the EK process was additionally coupled with phytotechnologies. In a second phase, the electrodialytic process (ED) was applied to wastes aiming P recovery and simultaneous removal of (iii) toxins from membrane concentrate, (iv) heavy metals from sewage sludge ash (SSA), and (v) OCs from sewage sludge (SS). EK enhanced phytoremediation showed to be viable for the remediation of soils contaminated with metalloids, as although remediation was low, it combines advantages of both technologies while allowing site management. EK also proved to be an effective remediation technology for the removal and degradation of emerging OCs from two types of soil. Aiming P recovery and contaminants removal, different ED cell set-ups were tested. For the membrane concentrates, the best P recovery was achieved in a three compartment (3c) cell, but the highest toxin removal was obtained in a two compartment (2c) cell, placing the matrix in the cathode end. In the case of SSA the best approach for simultaneous P recovery and heavy metals removal was to use a 2c-cell placing the matrix in the anode end. However, for simultaneous P recovery and OCs removal, SS should be placed in the cathode end, in a 2c-cell. Overall, the data support that the selection of the cell design should be done case-by-case.
Resumo:
Phosphorus is a macronutrient essential to life which comes from phosphate rock, a non-renewable resource. Sewage sludge from wastewater treatment plants (WWTP) is a secondary resource rich in phosphorus that can be valorized. However, organic compounds are detected in sewage sludge, due to its non-polar and hydrophobic character, being considered an environmental risk. The present dissertation aims to study the efficiency of the electrodialytic process (ED) when applied to sewage sludge aiming phosphorus recovery and organic contaminants removal. Four organic compounds were analyzed: 17α-ethynylestradiol (EE2), bisphenol A (BPA), caffeine (Caf) and oxybenzone (MBPh). The experiments took place in an ED cell with two compartments and an anion exchange membrane, with the sludge in the cathode compartment. The experiments were carried out for three days with spiked sewage sludge (six assays). One control experiment was done without current, three experiments were carried out applying a constant current of 50, 75, and 100 mA and two experiments were carried out applying sequential currents: 50 mA, 75 mA and 100 mA and the opposite (100-75-50 mA). A qualitative and quantitative analysis of microorganisms existing in the samples was also done. At the end, the pH increased in the sewage sludge favoring phosphorus recovery. In terms of phosphorus, the highest recovery was achieved in the experiment run with 100 mA, where 70.3±2.0% of total phosphorus was recovered in the electrolyte. Generally, compounds degradation was favored by the current. Caf and MBPh achieved degradation percentages of 96.2±0.2% and 84.8±1.3%, respectively, in 100 mA assay. EE2 (83.1±1.7%) and BPA (91.8±4.6%) degradations were favored by 50 mA current. A total of 35 taxa from four different groups were identified, totalizing between 81,600-273,000 individuals per gram of initial sludges. After ED, microbial community population decreased between 47-98%. Arcella gibbosa represented 61% of the total observed organisms and revealed to be more tolerant to medium changes.