3 resultados para HUMAN-DISEASE

em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streptococcus pneumoniae is a common asymptomatic commensal of the human nasopharynx. However, it is better known as a threatening pathogen that causes serious diseases such as pneumonia, meningitis and sepsis, as well as other less severe but more prevalent infections (e.g. otitis media). With the increase of antibiotic resistance and the limited efficacy of vaccines, pneumococcal infections remain a major problem. Therefore, the discovery of new therapeutic targets and preventive drugs are in high demand.(...)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUMO: Clostridium difficile é presentemente a principal causa de doença gastrointestinal associada à utilização de antibióticos em adultos. C. difficile é uma bactéria Gram-positiva, obrigatoriamente anaeróbica, capaz de formar endósporos. Tem-se verificado um aumento dos casos de doença associada a C. difficile com sintomas mais severos, elevadas taxas de morbilidade, mortalidade e recorrência, em parte, devido à emergência de estirpes mais virulentas, mas também devido à má gestão do uso de antibióticos. C. difficile produz duas toxinas, TcdA e TcdB, que são os principais fatores de virulência e responsáveis pelos sintomas da doença. Estas são codificadas a partir do Locus de Patogenicidade (PaLoc) que codifica ainda para um regulador positivo, TcdR, uma holina, TcdE, e um regulador negativo, TcdC. Os esporos resistentes ao oxigénio são essenciais para a transmissão do organismo e recorrência da doença. A expressão dos genes do PaLoc ocorre em células vegetativas, no final da fase de crescimento exponencial, e em células em esporulação. Neste trabalho construímos dois mutantes de eliminação em fase dos genes tcdR e tcdE. Mostrámos que a auto-regulação do gene tcdR não é significativa. No entanto, tcdR é sempre necessário para a expressão dos genes presentes no PaLoc. Trabalho anterior mostrou que, com a exceção de tcdC, os demais genes do PaLoc são expressos no pré-esporo. Mostrámos aqui que TcdA é detectada à superfície do esporo maduro e que a eliminação do tcdE não influencia a acumulação de TcdA no meio de cultura ou em associação às células ou ao esporo. Estas observações têm consequências para o nosso entendimento do processo infecioso: sugeremque o esporo possa ser também um veículo para a entrega da toxina nos estágios iniciais da infecção, que TcdA possa ser libertada durante a germinação do esporo, e que o esporo possa utilizar o mesmo receptor reconhecido por TcdA para a ligação à mucosa do cólon.---------------------------ABSTRACT: Clostridium difficile is currently the major cause of antibiotic-associated gastrointestinal diseases in adults. This is a Gram-positive bacterium, endospore-forming and an obligate anaerobe that colonizes the gastrointestinal tract. Recent years have seen a rise in C. difficile associated disease (CDAD) cases, associated with more severe disease symptoms, higher rates of morbidity, mortality and recurrence, which were mostly caused due to the emergence of “hypervirulent” strains but also due to changing patterns of antibiotics use. C. difficile produces two potent toxins, TcdA and TcdB, which are the main virulence factors and the responsible for the disease symptoms. These are codified from a Pathogenicity Locus (PaLoc), composed also by the positive regulator, TcdR, the holin-like protein, TcdE, and a negative regulator, TcdC. Besides the toxins, the oxygen-resistant spores are also essential for transmission of the organism through diarrhea; moreover, spores can accumulate in the environment or in the host, which will cause disease recurrence. The expression of the PaLoc genes occurs in vegetative cells, at the end of the exponential growth phase, and in sporulating cells. In this work, we constructed two in-frame deletion mutants of tcdR and tcdE. We showed that the positive auto regulation of tcdR is not significant. However, tcdR is always necessary for the expression of the PaLoc genes. A previous work showed that, except tcdC, all the PaLoc genes are expressed in the forespore. Here, we detected TcdA at the spore surface. Furthermore, we showed that the in-frame deletion of tcdE does not affect the accumulation of TcdA in the culture medium or in association with cells or spores. This data was important for us to conclude about the infeccious process: it suggests that the spore may be the vehicle for the delivery of TcdA in early stages of infection, that TcdA may be released during spores germination and that this spore may use the same receptor recognized by TcdA to bind to the colonic mucosa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.