3 resultados para HUMAN-DISEASE
em CaltechTHESIS
Resumo:
Acetyltransferases and deacetylases catalyze the addition and removal, respectively, of acetyl groups to the epsilon-amino group of protein lysine residues. This modification can affect the function of a protein through several means, including the recruitment of specific binding partners called acetyl-lysine readers. Acetyltransferases, deacetylases, and acetyl-lysine readers have emerged as crucial regulators of biological processes and prominent targets for the treatment of human disease. This work describes a combination of structural, biochemical, biophysical, cell-biological, and organismal studies undertaken on a set of proteins that cumulatively include all steps of the acetylation process: the acetyltransferase MEC-17, the deacetylase SIRT1, and the acetyl-lysine reader DPF2. Tubulin acetylation by MEC-17 is associated with stable, long-lived microtubule structures. We determined the crystal structure of the catalytic domain of human MEC-17 in complex with the cofactor acetyl-CoA. The structure in combination with an extensive enzymatic analysis of MEC-17 mutants identified residues for cofactor and substrate recognition and activity. A large, evolutionarily conserved hydrophobic surface patch distal to the active site was shown to be necessary for catalysis, suggesting that specificity is achieved by interactions with the alpha-tubulin substrate that extend outside of the modified surface loop. Experiments in C. elegans showed that while MEC-17 is required for touch sensitivity, MEC-17 enzymatic activity is dispensible for this behavior. SIRT1 deacetylates a wide range of substrates, including p53, NF-kappaB, FOXO transcription factors, and PGC-1-alpha, with roles in cellular processes ranging from energy metabolism to cell survival. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an apo form and in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a beta-hairpin structure that complements the beta-sheet of the NAD^+-binding domain, covering an essentially invariant, hydrophobic surface. A comparison of the apo and cofactor bound structures revealed conformational changes throughout catalysis, including a rotation of a smaller subdomain with respect to the larger NAD^+-binding subdomain. A biochemical analysis identified key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain. DPF2 represses myeloid differentiation in acute myelogenous leukemia. Finally, we solved the crystal structure of the tandem PHD domain of human DPF2. We showed that DPF2 preferentially binds H3 tail peptides acetylated at Lys14, and binds H4 tail peptides with no preference for acetylation state. Through a structural and mutational analysis we identify the molecular basis of histone recognition. We propose a model for the role of DPF2 in AML and identify the DPF2 tandem PHD finger domain as a promising novel target for anti-leukemia therapeutics.
Resumo:
To better understand human diseases, much recent work has focused on proteins to either identify disease targets through proteomics or produce therapeutics via protein engineering. Noncanonical amino acids (ncAAs) are tools for altering the chemical and physical properties of proteins, providing a facile strategy not only to label proteins but also to engineer proteins with novel properties. My thesis research has focused on the development and applications of noncanonical amino acids in identifying, imaging, and engineering proteins for studying human diseases. Chapter 1 introduces the concept of ncAAs and reveals insights to how I chose my thesis projects.
ncAAs have been incorporated to tag and enrich newly synthesized proteins for mass spectrometry through a method termed BONCAT, or bioorthogonal noncanonical amino acid tagging. Chapter 2 describes the investigation of the proteomic response of human breast cancer cells to induced expression of tumor suppressor microRNA miR-126 by combining BONCAT with another proteomic method, SILAC or stable isotope labeling by amino acids in cell culture. This proteomic analysis led to the discovery of a direct target of miR-126, shedding new light on its role in suppressing cancer metastasis.
In addition to mass spectrometry, ncAAs can also be utilized to fluorescently label proteins. Chapter 3 details the synthesis of a set of cell-permeant cyclooctyne probes and demonstration of selective labeling of newly synthesized proteins in live mammalian cells using azidohomoalanine. Similar to live cell imaging, the ability to selectively label a particular cell type within a mixed cell population is important to interrogating many biological systems, such as tumor microenvironments. By taking advantage of the metabolic differences between cancer and normal cells, Chapter 5 discusses efforts to develop selective labeling of cancer cells using a glutamine analogue.
Furthermore, Chapter 4 describes the first demonstration of global replacement at polar amino acid positions and its application in developing an alternative PEGylation strategy for therapeutic proteins. Polar amino acids typically occupy solvent-exposed positions on the protein surface, and incorporation of noncanonical amino acids at these positions should allow easier modification and cause less perturbation compared to replacements at the interior positions of proteins.
Resumo:
Understanding the mechanisms of enzymes is crucial for our understanding of their role in biology and for designing methods to perturb or harness their activities for medical treatments, industrial processes, or biological engineering. One aspect of enzymes that makes them difficult to fully understand is that they are in constant motion, and these motions and the conformations adopted throughout these transitions often play a role in their function.
Traditionally, it has been difficult to isolate a protein in a particular conformation to determine what role each form plays in the reaction or biology of that enzyme. A new technology, computational protein design, makes the isolation of various conformations possible, and therefore is an extremely powerful tool in enabling a fuller understanding of the role a protein conformation plays in various biological processes.
One such protein that undergoes large structural shifts during different activities is human type II transglutaminase (TG2). TG2 is an enzyme that exists in two dramatically different conformational states: (1) an open, extended form, which is adopted upon the binding of calcium, and (2) a closed, compact form, which is adopted upon the binding of GTP or GDP. TG2 possess two separate active sites, each with a radically different activity. This open, calcium-bound form of TG2 is believed to act as a transglutaminse, where it catalyzes the formation of an isopeptide bond between the sidechain of a peptide-bound glutamine and a primary amine. The closed, GTP-bound conformation is believed to act as a GTPase. TG2 is also implicated in a variety of biological and pathological processes.
To better understand the effects of TG2’s conformations on its activities and pathological processes, we set out to design variants of TG2 isolated in either the closed or open conformations. We were able to design open-locked and closed-biased TG2 variants, and use these designs to unseat the current understanding of the activities and their concurrent conformations of TG2 and explore each conformation’s role in celiac disease models. This work also enabled us to help explain older confusing results in regards to this enzyme and its activities. The new model for TG2 activity has immense implications for our understanding of its functional capabilities in various environments, and for our ability to understand which conformations need to be inhibited in the design of new drugs for diseases in which TG2’s activities are believed to elicit pathological effects.