10 resultados para Aprendizagem automática (Machine Learning)
em RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal
Resumo:
A Internet conta hoje com mais de 3 mil milhões de utilizadores e esse valor não para de aumentar. Desta forma, proporcionar uma experiência online agradável aos seus utilizadores é cada vez mais importante para as empresas. De modo a tirar partido dos benefícios deste crescimento, as empresas devem ser capazes de identificar os seus clientes-alvo dentro do total de utilizadores; e, subsequentemente, personalizar a sua experiência online. Existem diversas formas de estudar o comportamento online dos utilizadores; no entanto, estas não são ideais e existe uma ampla margem para melhoria. A inovação nesta área pode comportar um grande potencial comercial e até ser disruptiva. Com isto em mente, proponho-me a estudar a possível criacão de um sistema de aprendizagem automática (machine learning) que permita prever informa ações demográficas dos utilizadores estritamente com base no seu comportamento online. Tal sistema poderia constituir uma alternativa às atuais opções, que são mais invasivas; mitigando assim preocupações ao nível da proteção de dados pessoais. No primeiro capítulo (Introdução) explico a motivação para o estudo do comportamento dos utilizadores online por parte de empresas, e descrevo as opções disponíveis atualmente. Apresento também a minha proposta e o contexto em que assenta. O capítulo termina com a identicação de limitações que possam existir a priori. O segundo capítulo (Machine Learning) fornece uma introdução sobre machine learning, com o estudo dos algoritmos que vão ser utilizados e explicando como analisar os resultados. O terceiro capítulo (Implementação) explica a implementação do sistema proposto e descreve o sistema que desenvolvi no decorrer deste estudo, e como integra-lo em sistemas já existentes. No quarto capítulo (Análise e manipulação dos dados), mostro os dados compilados e explico como os recolhi e manipulei para testar a hipótese. No quinto capítulo (Análise de dados e discussão) vemos como e que os dados recolhidos foram usados pelos vários algoritmos para descobrir como se correlacionam com dados dos utilizadores e analiso e discuto os resultados observados. Por fim, o sexto e último capítulo apresenta as conclusões. Dependendo dos resultados, mostro como a hipótese poderia ser melhor testada, ou então discuto os próximos passos para tornar o sistema realidade.
Resumo:
Data Mining surge, hoje em dia, como uma ferramenta importante e crucial para o sucesso de um negócio. O considerável volume de dados que atualmente se encontra disponível, por si só, não traz valor acrescentado. No entanto, as ferramentas de Data Mining, capazes de transformar dados e mais dados em conhecimento, vêm colmatar esta lacuna, constituindo, assim, um trunfo que ninguém quer perder. O presente trabalho foca-se na utilização das técnicas de Data Mining no âmbito da atividade bancária, mais concretamente na sua atividade de telemarketing. Neste trabalho são aplicados catorze algoritmos a uma base de dados proveniente do call center de um banco português, resultante de uma campanha para a angariação de clientes para depósitos a prazo com taxas de juro favoráveis. Os catorze algoritmos aplicados no caso prático deste projeto podem ser agrupados em sete grupos: Árvores de Decisão, Redes Neuronais, Support Vector Machine, Voted Perceptron, métodos Ensemble, aprendizagem Bayesiana e Regressões. De forma a beneficiar, ainda mais, do que a área de Data Mining tem para oferecer, este trabalho incide ainda sobre o redimensionamento da base de dados em questão, através da aplicação de duas estratégias de seleção de atributos: Best First e Genetic Search. Um dos objetivos deste trabalho prende-se com a comparação dos resultados obtidos com os resultados presentes no estudo dos autores Sérgio Moro, Raul Laureano e Paulo Cortez (Sérgio Moro, Laureano, & Cortez, 2011). Adicionalmente, pretende-se identificar as variáveis mais relevantes aquando da identificação do potencial cliente deste produto financeiro. Como principais conclusões, depreende-se que os resultados obtidos são comparáveis com os resultados publicados pelos autores mencionados, sendo os mesmos de qualidade e consistentes. O algoritmo Bagging é o que apresenta melhores resultados e a variável referente à duração da chamada telefónica é a que mais influencia o sucesso de campanhas similares.
Resumo:
A estrutura temporal das taxas de juro, também conhecida por yield curve ou curva de rendimentos define a relação entre as taxas de juros e o prazo de vencimento (ou maturidades) dos investimentos feitos. Assim, o desenvolvimento de modelos que possibilitem a obtenção de previsões precisas sobre a estrutura temporal das taxas de juro e que permitam estudar a dinâmica da evolução das taxas de juro é de crucial importância em diversas áreas de financiamento. Neste estudo investigou-se a performance de diferentes métodos de previsão para obter a estrutura temporal das taxas de juro da Zona Euro, considerando o período entre 2009 e 2015. Em termos mais específicos, foi analisada a capacidade preditiva do modelo de Nelson-Siegel & Svensson assumindo que os parâmetros resultantes da estimação da especificação paramétrica podem ser modelizados através de métodos de séries temporais univariados (modelos ARIMA, Random walk) e multivariados (modelos VAR) e Redes Neuronais Artificiais (RNA) individuais e conjuntas. Os resultados deste estudo mostram que (i) as RNA com a previsão dos parâmetros em simultâneo exibem os valores de erro mais baixos para as maturidades de curto e médio prazo (3 meses a 5 anos); (ii) As RNAs individuais são melhores para prever as taxas de juro nas maturidades compreendidas entre os 7 e os 10 anos, e que (iii) para as maturidades de longo e muito longo prazo (15 e 30 anos respetivamente) deverá ser escolhido o modelo VAR(1). Estes resultados são robustos e consistentes para todos os horizontes de previsão analisados (1,2 e 3 meses). Contudo, no período analisado nenhum dos modelos testados apresenta valores de erro inferiores aos obtidos com o modelo Random Walk.
Resumo:
Trabalho de Projecto apresentado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Gestão de Sistemas de E-Learning
Resumo:
A Programação Genética (PG) é uma técnica de Aprendizagem de Máquina (Machine Learning (ML)) aplicada em problemas de otimização onde pretende-se achar a melhor solução num conjunto de possíveis soluções. A PG faz parte do paradigma conhecido por Computação Evolucionária (CE) que tem como inspiração à teoria da evolução natural das espécies para orientar a pesquisa das soluções. Neste trabalho, é avaliada a performance da PG no problema de previsão de parâmetros farmacocinéticos utilizados no processo de desenvolvimento de fármacos. Este é um problema de otimização onde, dado um conjunto de descritores moleculares de fármacos e os valores correspondentes dos parâmetros farmacocinéticos ou de sua atividade molecular, utiliza-se a PG para construir uma função matemática que estima tais valores. Para tal, foram utilizados dados de fármacos com os valores conhecidos de alguns parâmetros farmacocinéticos. Para avaliar o desempenho da PG na resolução do problema em questão, foram implementados diferentes modelos de PG com diferentes funções de fitness e configurações. Os resultados obtidos pelos diferentes modelos foram comparados com os resultados atualmente publicados na literatura e os mesmos confirmam que a PG é uma técnica promissora do ponto de vista da precisão das soluções encontradas, da capacidade de generalização e da correlação entre os valores previstos e os valores reais.
Resumo:
O presente relatório visa, num primeiro capítulo, descrever em que medida a componente lúdica, utilizada em ambiente de sala de aula, pode ser considerada como elemento facilitador da aprendizagem. Para tal, parte-se, para uma abordagem à evolução das metodologias de ensino, sobre qual a importância da comunicação e da aprendizagem por tarefas, bem como à definição de lúdico, analisando-se a sua importância na aquisição e consolidação de conhecimentos. Refere-se ainda o papel do docente e discente na abordagem e aplicação da ludicidade e motivação na realização de atividades. No segundo capítulo, faz-se uma apresentação do Agrupamento de Escolas Ibn Mucana, onde foi realizada a Prática de Ensino Supervisionada e num terceiro capítulo faz-se referência à observação e caracterização da turma em que foram lecionadas as aulas práticas. Por fim, no quarto capítulo, apresenta-se e reflete-se sobre as atividades lúdicas que foram desenvolvidas durante o período de lecionação.
Resumo:
Com o desenvolvimento das Tecnologias de Informação e Comunicação, as mesmas têm permitido dotar as pessoas de conhecimentos, através de formas mais rápidas e eficientes como é o caso da formação em e-learning. O número de organizações a apostar na formação em e-learning é cada vez maior, tornando-se importante perceber em que medida é que o método é eficaz e quais as vantagens que proporciona à organização, bem como o seu impacto no capital humano. Assim e visando averiguar como esta situação é vivenciada na prática decidiu-se pela realização de um estágio, na PT PRO pertencente Grupo Portugal Telecom. Para a construção deste relatório de estágio foi preciso para além da consulta e análise documental de aquivos internos e intranet, reuniões tidas com os elementos do departamento da Gestão de Formação, onde decorreu o estágio, visando dar uma resposta mais cabal à questão de partida que norteia o estágio: “Qual o impacto gerado pelas ações de e-learning, sua aplicabilidade e satisfação dos colaboradores face às mesmas na PT PRO?” O método utilizado neste estudo foi do tipo quantitativo, tendo sido aplicado um inquérito por questionário construído para o efeito. Face aos resultados obtidos, concluímos que na PT PRO, os colaboradores encontram-se globalmente satisfeitos com o conhecimento gerado e acima de tudo com a aplicabilidade do mesmo nas suas funções de trabalho.
Resumo:
O crescimento e a expansão das redes sociais trouxe novas formas de interação entre os seres humanos que se repercutem na vida real. Os textos partilhados nas redes sociais e as interações resultantes de todas as atividades virtuais têm vindo a ganhar um grande impacto no quotidiano da sociedade e no âmbito económico e financeiro, as redes sociais tem sido alvo de diversos estudos, particularmente em termos de previsão e descrição do mercado acionista (Zhang, Fuehres, & Gloor, 2011) (Bollen, Mao & Zheng, 2010). Nesta investigação percebemos se o sentimento do Twitter, rede social de microblogging, se relaciona diretamente com o mercado acionista, querendo assim compreender qual o impacto das redes sociais no mercado financeiro. Tentámos assim relacionar duas dimensões, social e financeira, de forma a conseguirmos compreender de que forma poderemos utilizar os valores de uma para prever a outra. É um tópico especialmente interessante para empresas e investidores na medida em que se tenta compreender se o que se diz de determinada empresa no Twitter pode ter relação com o valor de mercado dessa empresa. Usámos duas técnicas de análise de sentimentos, uma de comparação léxica de palavras e outra de machine learning para compreender qual das duas tinha uma melhor precisão na classificação dos tweets em três atributos, positivo, negativo ou neutro. O modelo de machine learning foi o modelo escolhido e relacionámos esses dados com os dados do mercado acionista através de um teste de causalidade de Granger. Descobrimos que para certas empresas existe uma relação entre as duas variáveis, sentimento do Twitter e alteração da posição da ação entre dois períodos de tempo no mercado acionista, esta última variável estando dependente da dimensão temporal em que agrupamos o nosso sentimento do Twitter. Este estudo pretendeu assim dar seguimento ao trabalho desenvolvido por Bollen, Mao e Zheng (2010) que descobriram que uma dimensão de sentimento (calma) consegue ser usada para prever a direção das ações do mercado acionista, apesar de terem rejeitado que o sentimento geral (positivo, negativo ou neutro) não se relacionava de modo global com o mercado acionista. No seu trabalho compararam o sentimento de todos os tweets de um determinado período sem exclusão com o índice geral de ações no mercado enquanto a metodologia adotada nesta investigação foi realizada por empresa e apenas nos interessaram tweets que se relacionavam com aquela empresa em específico. Com esta diferença obtemos resultados diferentes e certas empresas demonstravam que existia relação entre várias combinações, principalmente para empresas tecnológicas. Testamos o agrupamento do sentimento do Twitter em 3 minutos, 1 hora e 1 dia, sendo que certas empresas só demonstravam relação quando aumentávamos a nossa dimensão temporal. Isto leva-nos a querer que o sentimento geral da empresa, e se a mesma for uma empresa tecnológica, está ligado ao mercado acionista estando condicionada esta relação à dimensão temporal que possamos estar a analisar.
Resumo:
The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.