138 resultados para DATA as Art : ART as Data


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Energia e Bioenergia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article develops a latent class model for estimating willingness-to-pay for public goods using simultaneously contingent valuation (CV) and attitudinal data capturing protest attitudes related to the lack of trust in public institutions providing those goods. A measure of the social cost associated with protest responses and the consequent loss in potential contributions for providing the public good is proposed. The presence of potential justification biases is further considered, that is, the possibility that for psychological reasons the response to the CV question affects the answers to the attitudinal questions. The results from our empirical application suggest that psychological factors should not be ignored in CV estimation for policy purposes, allowing for a correct identification of protest responses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Trabalho de Projecto realizado para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Ciências da Comunicação – Cinema e Televisão

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e Computadores

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This project proposes an approach for supporting Indoor Navigation Systems using Pedestrian Dead Reckoning-based methods and by analyzing motion sensor data available in most modern smartphones. Processes suggested in this investigation are able to calculate the distance traveled by a user while he or she is walking. WLAN fingerprint- based navigation systems benefit from the processes followed in this research and results achieved to reduce its workload and improve its positioning estimations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Complex systems, i.e. systems composed of a large set of elements interacting in a non-linear way, are constantly found all around us. In the last decades, different approaches have been proposed toward their understanding, one of the most interesting being the Complex Network perspective. This legacy of the 18th century mathematical concepts proposed by Leonhard Euler is still current, and more and more relevant in real-world problems. In recent years, it has been demonstrated that network-based representations can yield relevant knowledge about complex systems. In spite of that, several problems have been detected, mainly related to the degree of subjectivity involved in the creation and evaluation of such network structures. In this Thesis, we propose addressing these problems by means of different data mining techniques, thus obtaining a novel hybrid approximation intermingling complex networks and data mining. Results indicate that such techniques can be effectively used to i) enable the creation of novel network representations, ii) reduce the dimensionality of analyzed systems by pre-selecting the most important elements, iii) describe complex networks, and iv) assist in the analysis of different network topologies. The soundness of such approach is validated through different validation cases drawn from actual biomedical problems, e.g. the diagnosis of cancer from tissue analysis, or the study of the dynamics of the brain under different neurological disorders.