70 resultados para self-monitoring
Resumo:
This paper incorporates egocentric comparisons into a human capital accumulation model and studies the evolution of positive self image over time. The paper shows that the process of human capital accumulation together with egocentric comparisons imply that positive self image of a cohort is first increasing and then decreasing over time. Additionally, the paper finds that positive self image: (1) peaks earlier in activities where skill depreciation is higher, (2) is smaller in activities where the distribution of income is more dispersed, (3) is not a stable characteristic of an individual, and (4) is higher for more patient individuals.
Resumo:
This paper investigates the implications of individuals’ mistaken beliefs of their abilities on incentives in organizations using the principal-agent model of moral hazard. The paper shows that if effort is observable, then an agent’s mistaken beliefs about own ability are always favorable to the principal. However, if effort is unobservable, then an agent’s mistaken beliefs about own ability can be either favorable or unfavorable to the principal. The paper provides conditions under which an agent’s over estimation about own ability is favorable to the principal when effort is unobservable. Finally, the paper shows that workers’ mistaken beliefs about their coworkers’ abilities make interdependent incentive schemes more attractive to firms than individualistic incentive schemes.
Resumo:
This paper analyzes the implications of worker overestimation of productivity for firms in which incentives take the form of tournaments. Each worker overestimates his productivity but is aware of the bias in his opponent’s self-assessment. The manager of the firm, on the other hand, correctly assesses workers’ productivities and self-beliefs when setting tournament prizes. The paper shows that, under a variety of circumstances, firms make higher profits when workers have positive self-image than if workers do not. By contrast, workers’ welfare declines due to their own misguided choices.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica, Especialidade em Engenharia Bioquímica
Resumo:
Theoretical epidemiology aims to understand the dynamics of diseases in populations and communities. Biological and behavioral processes are abstracted into mathematical formulations which aim to reproduce epidemiological observations. In this thesis a new system for the self-reporting of syndromic data — Influenzanet — is introduced and assessed. The system is currently being extended to address greater challenges of monitoring the health and well-being of tropical communities.(...)
Resumo:
During drilling operation, cuttings are produced downhole and must be removed to avoid issues which can lead to Non Productive Time (NPT). Most of stuck pipe and then Bottom-Hole Assembly (BHA) lost events are hole cleaned related. There are many parameters which help determine hole cleaning conditions, but a proper selection of the key parameters will facilitate monitoring hole cleaning conditions and interventions. The aim of Hole Cleaning Monitoring is to keep track of borehole conditions including hole cleaning efficiency and wellbore stability issues during drilling operations. Adequate hole cleaning is the one of the main concerns in the underbalanced drilling operations especially for directional and horizontal wells. This dissertation addresses some hole cleaning fundamentals which will act as the basis for recommendation practice during drilling operations. Understand how parameters such as Flowrate, Rotation per Minute (RPM), Rate of Penetration (ROP) and Mud Weight are useful to improve the hole cleaning performance and how Equivalent Circulate Density (ECD), Torque & Drag (T&D) and Cuttings Volumes coming from downhole help to indicate how clean and stable the well is. For case study, hole cleaning performance or cuttings volume removal monitoring, will be based on real-time measurements of the cuttings volume removal from downhole at certain time, taking into account Flowrate, RPM, ROP and Drilling fluid or Mud properties, and then will be plotted and compared to the volume being drilled expected. ECD monitoring will dictate hole stability conditions and T&D and Cuttings Volume coming from downhole monitoring will dictate how clean the well is. T&D Modeling Software provide theoretical calculated T&D trends which will be plotted and compared to the real-time measurements. It will use the measured hookloads to perform a back-calculation of friction factors along the wellbore.
Resumo:
Does return migration affect entrepreneurship? This question has important implications for the debate on the economic development effects of migration for origin countries. The existing literature has, however, not addressed how the estimation of the impact of return migration on entrepreneurship is affected by double unobservable migrant self-selection, both at the initial outward migration and at the final inward return migration stages. This paper uses a representative household survey conducted in Mozambique in order to address this research question. We exploit variation provided by displacement caused by civil war in Mozambique, as well as social unrest and other shocks in migrant destination countries. The results lend support to negative unobservable self-selection at both and each of the initial and return stages of migration, which results in an under-estimation of the effects of return migration on entrepreneurial outcomes when using a ‘naïve’ estimator not controlling for self-selection. Indeed, ‘naïve’ estimates point to a 13 pp increase in the probability of owning a business when there is a return migrant in the household relative to non-migrants only, whereas excluding the double effect of unobservable self-selection, this effect becomes significantly larger - between 24 pp and 29 pp, depending on the method of estimation and source of variation used.
Resumo:
How do risk preferences affect migrant remittance behaviour? Examination of this relationship has only begun to be explored. Using a tailored representative survey of 1500 immigrants in the Greater Dublin Area, Ireland, we find a positive and significant relationship between risk aversion and migrant remittances. Risk-averse individuals are more likely to send remittances home and are, on average, likely to remit a higher amount, after controlling for a broad range of individual and group characteristics. The evidence we obtain is consistent with a “purchase of self-insurance” motive to remit in that we also find support for more remittances being sent by risk-averse immigrants who face higher wage risks and to individuals with more financial resources.
Resumo:
Spin-lattice Relaxation, self-Diffusion coefficients and Residual Dipolar Couplings (RDC’s) are the basis of well established Nuclear Magnetic Resonance techniques for the physicochemical study of small molecules (typically organic compounds and natural products with MW < 1000 Da), as they proved to be a powerful and complementary source of information about structural dynamic processes in solution. The work developed in this thesis consists in the application of the earlier-mentioned NMR techniques to explore, analyze and systematize patterns of the molecular dynamic behavior of selected small molecules in particular experimental conditions. Two systems were chosen to investigate molecular dynamic behavior by these techniques: the dynamics of ion-pair formation and ion interaction in ionic liquids (IL) and the dynamics of molecular reorientation when molecules are placed in oriented phases (alignment media). The application of NMR spin-lattice relaxation and self-diffusion measurements was applied to study the rotational and translational molecular dynamics of the IL: 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4]. The study of the cation-anion dynamics in neat and IL-water mixtures was systematically investigated by a combination of multinuclear NMR relaxation techniques with diffusion data (using by H1, C13 and F19 NMR spectroscopy). Spin-lattice relaxation time (T1), self-diffusion coefficients and nuclear Overhauser effect experiments were combined to determine the conditions that favor the formation of long lived [BMIM][BF4] ion-pairs in water. For this purpose and using the self-diffusion coefficients of cation and anion as a probe, different IL-water compositions were screened (from neat IL to infinite dilution) to find the conditions where both cation and anion present equal diffusion coefficients (8% water fraction at 25 ºC). This condition as well as the neat IL and the infinite dilution were then further studied by 13C NMR relaxation in order to determine correlation times (c) for the molecular reorientational motion using a mathematical iterative procedure and experimental data obtained in a temperature range between 273 and 353 K. The behavior of self-diffusion and relaxation data obtained in our experiments point at the combining parameters of molar fraction 8 % and temperature 298 K as the most favorable condition for the formation of long lived ion-pairs. When molecules are subjected to soft anisotropic motion by being placed in some special media, Residual Dipolar Couplings (RDCs), can be measured, because of the partial alignment induced by this media. RDCs are emerging as a powerful routine tool employed in conformational analysis, as it complements and even outperforms the approaches based on the classical NMR NOE or J3 couplings. In this work, three different alignment media have been characterized and evaluated in terms of integrity using 2H and 1H 1D-NMR spectroscopy, namely the stretched and compressed gel PMMA, and the lyotropic liquid crystals CpCl/n-hexanol/brine and cromolyn/water. The influence that different media and degrees of alignment have on the dynamic properties of several molecules was explored. Different sized sugars were used and their self-diffusion was determined as well as conformation features using RDCs. The results obtained indicate that no influence is felt by the small molecules diffusion and conformational features studied within the alignment degree range studied, which was the 3, 5 and 6 % CpCl/n-hexanol/brine for diffusion, and 5 and 7.5 % CpCl/n-hexanol/brine for conformation. It was also possible to determine that the small molecules diffusion verified in the alignment media presented close values to the ones observed in water, reinforcing the idea of no conditioning of molecular properties in such media.
Resumo:
Despite the recent progresses in robotics, autonomous robots still have too many limitations to reliably help people with disabilities. On the other hand, animals, and especially dogs, have already demonstrated great skills in assisting people in many daily situations. However, dogs also have their own set of limitations. For example, they need to rest periodically, to be healthy (physically and psychologically), and it is difficult to control them remotely. This project aims to “augment” the Assistance dog, by developing a system that compensates some of the dog weaknesses through a robotic device mounted on the dog harness. This specific study, involved in the COCHISE project, focuses on the development of a system for the monitoring of dogs activity and physiological parameters.
Resumo:
This study analyses financial data using the result characterization of a self-organized neural network model. The goal was prototyping a tool that may help an economist or a market analyst to analyse stock market series. To reach this goal, the tool shows economic dependencies and statistics measures over stock market series. The neural network SOM (self-organizing maps) model was used to ex-tract behavioural patterns of the data analysed. Based on this model, it was de-veloped an application to analyse financial data. This application uses a portfo-lio of correlated markets or inverse-correlated markets as input. After the anal-ysis with SOM, the result is represented by micro clusters that are organized by its behaviour tendency. During the study appeared the need of a better analysis for SOM algo-rithm results. This problem was solved with a cluster solution technique, which groups the micro clusters from SOM U-Matrix analyses. The study showed that the correlation and inverse-correlation markets projects multiple clusters of data. These clusters represent multiple trend states that may be useful for technical professionals.
Resumo:
Fundação para a Ciência e a Tecnologia (FCT) - PhD grant (SFRH/BD/62568/2009)
Resumo:
Generating personalized movie recommendations to users is a problem that most commonly relies on user-movie ratings. These ratings are generally used either to understand the user preferences or to recommend movies that users with similar rating patterns have rated highly. However, movie recommenders are often subject to the Cold-Start problem: new movies have not been rated by anyone, so, they will not be recommended to anyone; likewise, the preferences of new users who have not rated any movie cannot be learned. In parallel, Social-Media platforms, such as Twitter, collect great amounts of user feedback on movies, as these are very popular nowadays. This thesis proposes to explore feedback shared on Twitter to predict the popularity of new movies and show how it can be used to tackle the Cold-Start problem. It also proposes, at a finer grain, to explore the reputation of directors and actors on IMDb to tackle the Cold-Start problem. To assess these aspects, a Reputation-enhanced Recommendation Algorithm is implemented and evaluated on a crawled IMDb dataset with previous user ratings of old movies,together with Twitter data crawled from January 2014 to March 2014, to recommend 60 movies affected by the Cold-Start problem. Twitter revealed to be a strong reputation predictor, and the Reputation-enhanced Recommendation Algorithm improved over several baseline methods. Additionally, the algorithm also proved to be useful when recommending movies in an extreme Cold-Start scenario, where both new movies and users are affected by the Cold-Start problem.