48 resultados para Earth Observation - Remote Sensing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the report for the unit “Sociology of New Information Technologies” of the Master on Computer Sciences at FCT/University Nova Lisbon in 2015-16. The responsible of this curricular unit is Prof. António Moniz

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This case study illustrates the application of the Value Creation Radar (VCR) to SenSyF, an Earth Observation (EO) system which was developed by Deimos Engenharia S.A. (DME), the Portuguese affiliate of Elecnor Deimos. It describes how a team of consultants adopted the VCR in order to find new market applications for SenSyF, selected the one with the highest potential, and defined a path to guarantee a sustainable market launch. This case study highlights the main challenges of bringing a technology-driven company closer to the market in the pursuit of long-term sustainability, while not compromising its technological capabilities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decade Mongolia’s region was characterized by a rapid increase of both severity and frequency of drought events, leading to pasture reduction. Drought monitoring and assessment plays an important role in the region’s early warning systems as a way to mitigate the negative impacts in social, economic and environmental sectors. Nowadays it is possible to access information related to the hydrologic cycle through remote sensing, which provides a continuous monitoring of variables over very large areas where the weather stations are sparse. The present thesis aimed to explore the possibility of using NDVI as a potential drought indicator by studying anomaly patterns and correlations with other two climate variables, LST and precipitation. The study covered the growing season (March to September) of a fifteen year period, between 2000 and 2014, for Bayankhongor province in southwest Mongolia. The datasets used were MODIS NDVI, LST and TRMM Precipitation, which processing and analysis was supported by QGIS software and Python programming language. Monthly anomaly correlations between NDVI-LST and NDVI-Precipitation were generated as well as temporal correlations for the growing season for known drought years (2001, 2002 and 2009). The results show that the three variables follow a seasonal pattern expected for a northern hemisphere region, with occurrence of the rainy season in the summer months. The values of both NDVI and precipitation are remarkably low while LST values are high, which is explained by the region’s climate and ecosystems. The NDVI average, generally, reached higher values with high precipitation values and low LST values. The year of 2001 was the driest year of the time-series, while 2003 was the wet year with healthier vegetation. Monthly correlations registered weak results with low significance, with exception of NDVI-LST and NDVI-Precipitation correlations for June, July and August of 2002. The temporal correlations for the growing season also revealed weak results. The overall relationship between the variables anomalies showed weak correlation results with low significance, which suggests that an accurate answer for predicting drought using the relation between NDVI, LST and Precipitation cannot be given. Additional research should take place in order to achieve more conclusive results. However the NDVI anomaly images show that NDVI is a suitable drought index for Bayankhongor province.