48 resultados para 3D Interaction
Resumo:
Contém resumo
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
The present study investigates peer to peer oral interaction in two task based language teaching classrooms, one of which was a self-declared cohesive group, and the other a self- declared less cohesive group, both at B1 level. It studies how learners talk cohesion into being and considers how this talk leads to learning opportunities in these groups. The study was classroom-based and was carried out over the period of an academic year. Research was conducted in the classrooms and the tasks were part of regular class work. The research was framed within a sociocognitive perspective of second language learning and data came from a number of sources, namely questionnaires, interviews and audio recorded talk of dyads, triads and groups of four students completing a total of eight oral tasks. These audio recordings were transcribed and analysed qualitatively for interactions which encouraged a positive social dimension and behaviours which led to learning opportunities, using conversation analysis. In addition, recordings were analysed quantitatively for learning opportunities and quantity and quality of language produced. Results show that learners in both classes exhibited multiple behaviours in interaction which could promote a positive social dimension, although behaviours which could discourage positive affect amongst group members were also found. Analysis of interactions also revealed the many ways in which learners in both the cohesive and less cohesive class created learning opportunities. Further qualitative analysis of these interactions showed that a number of factors including how learners approach a task, the decisions they make at zones of interactional transition and the affective relationship between participants influence the amount of learning opportunities created, as well as the quality and quantity of language produced. The main conclusion of the study is that it is not the cohesive nature of the group as a whole but the nature of the relationship between the individual members of the small group completing the task which influences the effectiveness of oral interaction for learning.This study contributes to our understanding of the way in which learners individualise the learning space and highlights the situated nature of language learning. It shows how individuals interact with each other and the task, and how talk in interaction changes moment-by-moment as learners react to the ‘here and now’ of the classroom environment.