57 resultados para STRESS PROTEINS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Master Degree in Molecular Genetics and Biomedicine

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Plant Physiology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Engineering Sciences and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação para a Ciência e a Tecnologia - projeto EXPL/BBB-BQB/0354/2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação para a Ciência e Tecnologia - SFRH/BD/48804/2008 and the project PTDC/BI/65383/2006 assigned to Prof. Cecíla Roque and also to Associate Laboratory REQUIMTE (Pest-C/EQB/LA0006/2011)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arsenic compounds are highly toxic substances; nevertheless they are used in the treatment of acute promyelocytic leukaemia. Therefore it is pressing to gain knowledge on its toxicity and detoxification mechanisms. The cellular entry pathways have been discovered and by transcriptome analysis it is known that arsenic activates the transcription of genes activated by, among others, Rpn4, Met4 and Yap1.(...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação trata de duas temáticas importantes na vida de uma organização: a motivação e o stress profissional dos trabalhadores. Pretende-se compreender melhor certos aspectos destes fenómenos, centrando-se a análise num determinado grupo de trabalhadores de uma Instituição de Ensino Superior. A motivação é o processo de induzir uma pessoa ou grupo a atingir os objectivos pessoais e organizacionais, tendo em conta que esses objectivos devem ser coordenados para que tanto os indivíduos como as organizações alcancem resultados, nomeadamente a satisfação. O stress profissional é um fenómeno reconhecido pelo impacto adverso que tem no bem-estar dos indivíduos no contexto laboral, diminuindo a sua produtividade e satisfação. O estudo no terreno baseou-se na recolha quantitativa de informação, tendo sido realizados 74 questionários. Em articulação com o enquadramento teórico, a análise dos resultados obtidos através dos questionários permitiu extrair algumas conclusões, das quais destacamos: a) existem diferenças significativas entre a motivação e stress dos trabalhadores no local de trabalho; b) existe uma desmotivação no local de trabalho principalmente referente aos indicadores de segurança, realização profissional e ambiente de trabalho; c) existe algum stress no local de trabalho, nomeadamente nos indicadores de grau de controlo que o trabalhador sente na realização da tarefa e exigência psicológica do trabalho; d) não existe diferenças significativas na motivação e stress dos trabalhadores face aos que realizam atendimento ao público e os que não realizam, e por fim verificamos que a condição salarial, ambiente e condições de trabalho são as ideias que os trabalhadores mais procuram num novo trabalho. Este estudo mostrou-se assim pertinente, uma vez que saber o que motiva, o que satisfaz estes trabalhadores, pode ajudar a melhorar os procedimentos a serem adoptados na gestão da mudança da organização.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of this Thesis was the study of the sensor domains of two heme-containing methyl-accepting chemotaxis proteins (MCP) from Geobacter sulfurreducens: GSU0582 and GSU0935. These domains contain one c-type heme, form swapped dimers with a PAS-like fold and are the first examples of a new class of heme sensors. NMR spectroscopy was used to assign the heme and polypeptide signals in both sensors, as a first step to probe conformational changes in the vicinity of the hemes. However, the presence of two conformations in solution impaired the confident assignment of the polypeptide signals. To understand how conformational changes and swapped dimerization mechanism can effectively modulate the function of the two sensor domains and their signal transduction process, the sensor domains folding and stability were studied by circular dichroism and UV-visible spectroscopy. The results showed differences in the thermodynamic stability of the sensors, with GSU0582 displaying higher structural stability. These studies also demonstrated that the heme moiety undergoes conformational changes matching those occurring at the global protein structure and that the content of intrinsically disordered segments within these proteins (25% for GSU0935; 13% for GSU0582) correlates with the stability differences observed. The thermodynamic and kinetic properties of the sensor domains were determined at different pH and ionic strength by visible spectroscopy and stopped-flow techniques. Despite the remarkably similar spectroscopic and structural features of the two sensor domains, the results showed that their properties are quite distinct. Sensor domain GSU0935 displayed more negative reduction potentials and smaller reduction rate constants, which were more affected by pH and ionic strength. The available structures were used to rationalize these differences. Overall, the results described in this Thesis indicate that the two G. sulfurreducens MCP sensor domains are designed to function in different working potential ranges, allowing this bacterium to trigger an adequate cellular response in distinct anoxic subsurface environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

World population is increasing at an alarming rate while food productivity is decreasing due to the effect of various abiotic stresses. Soil salinity is one of the most important abiotic stress and a limiting factor for worldwide plant production. In addition to its important effects on yield, salt stress affects numerous cellular activities, including cell wall composition, photosynthesis, protein synthesis, ions and organic solutes. Up to 20% of the irrigated arable land in arid and semiarid regions is already salt affected and is still expanding. Improving salt tolerant varieties is of major importance, and efforts should be focused on finding adaptive mechanisms which are involved in salinity tolerance. In this study, several spelt wheat (Triticum aestivum var. Spelta) genotypes and one cultivar of modern bread wheat were used to screen them for salt tolerance. Spelt is an old-European cereal crop currently attracting renewed interest as a food grain because it is said to be harder than wheat and requires less fertilizer. Spelt wheat is also becoming very attractive genetic source by plant breeders due to its wide adaptation ability to various stressful conditions such as soil salinity. In this study morphological parameters (e.g., leaf appearance; shoot elongation), dry matter production, mineral nutrients (especially Na and K), and activity of antioxidative enzymes were measured to select superior genotypes of spelt for salt tolerance. The results showed that Spelt genotype Sp41 is a salt sensitive genotype and genotypes Sp69, Sp96 and Sp912 are good candidates for salt tolerant genotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grapevine (Vitis vinifera) is one of most agro-economically important fruit crops worldwide, with a special relevance in Portugal where over 300 varieties are used for wine production. Due to global warming, temperature stress is currently a serious issue affecting crop production especially in temperate climates. Mobile genetic elements such as retrotransposons have been shown to be involved in environmental stress induced genetic and epigenetic modifications. In this study, sequences related to Grapevine Retrotransposon 1 (Gret1) were utilized to determine heat induced genomic and transcriptomic modifications in Touriga Nacional, a traditional Portuguese grapevine variety. For this purpose, growing canes were treated to 42 oC for four hours and leaf genomic DNA and RNA was utilized for various techniques to observe possible genomic alterations and variation in transcription levels of coding and non-coding sequences between non-treated plants and treated plants immediately after heat stress (HS-0 h) or after a 24 hour recovery period (HS-24 h). Heat stress was found to induce a significant decrease in Gret1 related sequences in HS-24 h leaves, indicating an effect of heat stress on genomic structure. In order to identify putative heat induced DNA modifications, genome wide approaches such as Amplified Fragment Length Polymorphism were utilized. This resulted in the identification of a polymorphic DNA fragment in HS-0 h and HS-24 h leaves whose sequence mapped to a genomic region flanking a house keeping gene (NADH) that is represented in multiple copies in the Vitis vinifera genome. Heat stress was also found to affect the transcript levels of various non-coding and gene coding sequences. Accordingly, quantitative real time PCR results established that Gret1 related sequences are up regulated immediately after heat stress whereas the level of transcript of genes involved in identification and repair of double strand breaks are significantly down regulated in HS-0 h plants. Taken together, the results of this work demonstrated heat stress affects both genomic integrity and transcription levels.