38 resultados para 3D Selection
Resumo:
The development of human cell models that recapitulate hepatic functionality allows the study of metabolic pathways involved in toxicity and disease. The increased biological relevance, cost-effectiveness and high-throughput of cell models can contribute to increase the efficiency of drug development in the pharmaceutical industry. Recapitulation of liver functionality in vitro requires the development of advanced culture strategies to mimic in vivo complexity, such as 3D culture, co-cultures or biomaterials. However, complex 3D models are typically associated with poor robustness, limited scalability and compatibility with screening methods. In this work, several strategies were used to develop highly functional and reproducible spheroid-based in vitro models of human hepatocytes and HepaRG cells using stirred culture systems. In chapter 2, the isolation of human hepatocytes from resected liver tissue was implemented and a liver tissue perfusion method was optimized towards the improvement of hepatocyte isolation and aggregation efficiency, resulting in an isolation protocol compatible with 3D culture. In chapter 3, human hepatocytes were co-cultivated with mesenchymal stem cells (MSC) and the phenotype of both cell types was characterized, showing that MSC acquire a supportive stromal function and hepatocytes retain differentiated hepatic functions, stability of drug metabolism enzymes and higher viability in co-cultures. In chapter 4, a 3D alginate microencapsulation strategy for the differentiation of HepaRG cells was evaluated and compared with the standard 2D DMSO-dependent differentiation, yielding higher differentiation efficiency, comparable levels of drug metabolism activity and significantly improved biosynthetic activity. The work developed in this thesis provides novel strategies for 3D culture of human hepatic cell models, which are reproducible, scalable and compatible with screening platforms. The phenotypic and functional characterization of the in vitro systems performed contributes to the state of the art of human hepatic cell models and can be applied to the improvement of pre-clinical drug development efficiency of the process, model disease and ultimately, development of cell-based therapeutic strategies for liver failure.
Resumo:
International Market Selection is an important step towards a successful internationalization strategy. This is no different for startup companies like MyHelpster. This work project was intended to help MyHelpster with their internationalization process by completing the IMS portion of it. The IMS process presented in this paper lead to the conclusion that MyHelpster’s next market for expansion should be the USA. In order to find as much success as possible the author suggests being patient and only expanding when the company has the necessary capital, experience and credibility. Both primary and secondary data were used to compile the qualitative and quantitative analyses.
Resumo:
A produção de estruturas tridimensionais poliméricas tem sido foco de estudo por parte da Engenharia de Células e Tecidos, pelo que mimetizam melhor as condições in vivo dos tecidos. A conjugação das propriedades eléctricas com arquitectura 3D permite uma regeneração tecidual mais eficaz. Desta forma este estudo incidiu na construção de scaffolds, que conjugasse as propriedades mecânicas, eléctricas e biológicas num só suporte. O processo utilizado para produção de scaffolds baseou-se na electrofiação de soluções poliméricas de PCL (8% m/m) com incorporação de óxido de grafeno em diferentes concentrações: 0.01%, 0.1% e 0.25% (m/V). Foram avaliados os parâmetros de electrofiação que permitiram a organização tridimensional. A composição química e a morfologia das membranas foram avaliadas por FTIR-ATR e por microscopia electrónica de varrimento (MEV), respectivamente. Através de ensaios de tracção e de permeabilidade estudou-se a influência de óido de grafeno na matriz polimérica. Foram feitas experiências de redução de óxido de grafeno nas fibras electrofiadas, tanto nas membranas como das espumas, através do uso de vapores de hidrazina. Este mecanismo mostrou-se ineficaz, uma vez que afectou a sua morfologia. As espumas foram avaliadas quanto à sua bioactividade e propriedades mecânicas (ensaios de compressão). Também foram realizados testes de viabilidade celular nas membranas e de adesão celular nas espumas, de forma a avaliar o seu potencial para aplicação biomédica. Os resultados destes ensaios revelaram que óxido de grafeno não apresenta efeitos citotóxicos para o organismo e a sua presença promove a adesão celular ao scaffold.
Resumo:
Esta plataforma foi projetada como auxílio complementar ao processo de reabilitação de doentes afásicos lusófonos. Uma gama de exercícios são disponibilizados de forma a induzir diferentes estímulos (compreensão escrita e auditiva e expressão escrita) sendo a grande maioria destes realizados dentro de um ambiente virtual em três dimensões onde o utilizador (dependendo da tarefa) pode interagir com objetos presentes dentro de uma casa. A principal particularidade desta plataforma reside no facto desta estar alojada online, dispensando instalações e permitindo um acompanhamento mais próximo por parte do terapeuta da fala do progresso feito pelo paciente. A ferramenta desenvolvida está disponível para visualização e teste no endereço www.weblisling.net.
Resumo:
Carrefour has been internationalizing into many countries and would like to continue growing. This study focuses on the potential future international market selection of Car-refour, comparing countries from the EU and South America, in a quantitative and qual-itative analysis. The purpose of the project is to help Carrefour to find the right market and the right mode to entry. Through semi-structured interviews and a literature research we found out that Sweden has the highest potential to entry with a Venture (Marketing), followed by Austria
Resumo:
Contém resumo
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
Due to a combination of a vast agricultural industry and a tremendously growing technical textile industry, Ludvig Svensson identified India as target market for possible expansion through domestic production and supply. However, Svensson needed additional information about the industry structure and key players. Therefore, this project focused on a detailed analysis of the technical textile market and its players by following the international partner selection process. Thereby, five key players were identified as potential partners, as well as the need for additional research to determine alternative entry modes, as the market does not currently seem to be receptive for Svensson products.