22 resultados para non-linear response
Resumo:
RESUMO Introdução e objetivos As organizações internacionais responsáveis pela Qualidade na Saúde e Segurança do doente (Organização Mundial da Saúde, União Europeia), recomendam aos Estados membros a avaliação da cultura de segurança, como condição essencial para se introduzir mudanças nos comportamentos dos profissionais e nas organizações prestadoras de cuidados de saúde, e alcançar melhores níveis de segurança e de qualidade nos cuidados de saúde prestados aos doentes. Constitui objetivo geral deste trabalho contribuir para a implementação da cultura de segurança do doente nos profissionais envolvidos na prestação de cuidados de saúde, concorrendo para a avaliação da cultura de segurança do doente e, consequentemente para a garantia da qualidade dos cuidados prestados. Metodologia 1ª fase – pré-estudo: através da revisão de literatura identificamos o instrumento mais adequado para avaliar a cultura de segurança do hospital, traduzimos e validámos o instrumento. 2ª fase – desenvolvemos um estudo exploratório-descritivo, transversal, retrospetivo, em 3 hospitais portugueses e um estudo exploratório-descritivo, longitudinal, prospetivo, de investigação-ação, numa unidade de radioterapia. Resultados O Hospital Survey on Patient Safety Culture é o instrumento que revela as adequadas características para a avaliação da cultura de segurança nos hospitais portugueses. No que diz respeito à avaliação da cultura de segurança em três hospitais portugueses, podemos destacar que o trabalho em equipa, a expectativas do supervisor e a aprendizagem organizacional são as dimensões com melhores resultados apesar da frequência das notificações e das respostas ao erro não punitivas apresentarem os piores resultados. Verificou-se que a URT se encontra em franca evolução, o que se torna visível sobretudo na adesão à notificação que aumentou à medida que o tempo foi passando. O envolvimento de todos no desenho da intervenção e nas atividades a decorrer na unidade, foi preponderante para a melhoria da segurança do doente. Conclusões Temos consciência que existem muitas questões por responder e que na realidade não há receitas nem diretrizes que possam afirmar que existem relações de causalidade, confrontando uma determinada ação com a consequente mudança cultural. No entanto, estamos convictos que o envolvimento de todos os membros da organização/unidade, o compromisso forte da liderança, uma comunicação efetiva e uma notificação não punitiva são ingredientes essenciais para a melhoria contínua da cultura de segurança do doente.
Resumo:
Complex systems, i.e. systems composed of a large set of elements interacting in a non-linear way, are constantly found all around us. In the last decades, different approaches have been proposed toward their understanding, one of the most interesting being the Complex Network perspective. This legacy of the 18th century mathematical concepts proposed by Leonhard Euler is still current, and more and more relevant in real-world problems. In recent years, it has been demonstrated that network-based representations can yield relevant knowledge about complex systems. In spite of that, several problems have been detected, mainly related to the degree of subjectivity involved in the creation and evaluation of such network structures. In this Thesis, we propose addressing these problems by means of different data mining techniques, thus obtaining a novel hybrid approximation intermingling complex networks and data mining. Results indicate that such techniques can be effectively used to i) enable the creation of novel network representations, ii) reduce the dimensionality of analyzed systems by pre-selecting the most important elements, iii) describe complex networks, and iv) assist in the analysis of different network topologies. The soundness of such approach is validated through different validation cases drawn from actual biomedical problems, e.g. the diagnosis of cancer from tissue analysis, or the study of the dynamics of the brain under different neurological disorders.
Resumo:
Rupture of aortic aneurysms (AA) is a major cause of death in the Western world. Currently, clinical decision upon surgical intervention is based on the diameter of the aneurysm. However, this method is not fully adequate. Noninvasive assessment of the elastic properties of the arterial wall can be a better predictor for AA growth and rupture risk. The purpose of this study is to estimate mechanical properties of the aortic wall using in vitro inflation testing and 2D ultrasound (US) elastography, and investigate the performance of the proposed methodology for physiological conditions. Two different inflation experiments were performed on twelve porcine aortas: 1) a static experiment for a large pressure range (0 – 140 mmHg); 2) a dynamic experiment closely mimicking the in vivo hemodynamics at physiological pressures (70 – 130 mmHg). 2D raw radiofrequency (RF) US datasets were acquired for one longitudinal and two cross-sectional imaging planes, for both experiments. The RF-data were manually segmented and a 2D vessel wall displacement tracking algorithm was applied to obtain the aortic diameter–time behavior. The shear modulus G was estimated assuming a Neo-Hookean material model. In addition, an incremental study based on the static data was performed to: 1) investigate the changes in G for increasing mean arterial pressure (MAP), for a certain pressure difference (30, 40, 50 and 60 mmHg); 2) compare the results with those from the dynamic experiment, for the same pressure range. The resulting shear modulus G was 94 ± 16 kPa for the static experiment, which is in agreement with literature. A linear dependency on MAP was found for G, yet the effect of the pressure difference was negligible. The dynamic data revealed a G of 250 ± 20 kPa. For the same pressure range, the incremental shear modulus (Ginc) was 240 ± 39 kPa, which is in agreement with the former. In general, for all experiments, no significant differences in the values of G were found between different image planes. This study shows that 2D US elastography of aortas during inflation testing is feasible under controlled and physiological circumstances. In future studies, the in vivo, dynamic experiment should be repeated for a range of MAPs and pathological vessels should be examined. Furthermore, the use of more complex material models needs to be considered to describe the non-linear behavior of the vascular tissue.
Resumo:
The theme of this dissertation is the finite element method applied to mechanical structures. A new finite element program is developed that, besides executing different types of structural analysis, also allows the calculation of the derivatives of structural performances using the continuum method of design sensitivities analysis, with the purpose of allowing, in combination with the mathematical programming algorithms found in the commercial software MATLAB, to solve structural optimization problems. The program is called EFFECT – Efficient Finite Element Code. The object-oriented programming paradigm and specifically the C ++ programming language are used for program development. The main objective of this dissertation is to design EFFECT so that it can constitute, in this stage of development, the foundation for a program with analysis capacities similar to other open source finite element programs. In this first stage, 6 elements are implemented for linear analysis: 2-dimensional truss (Truss2D), 3-dimensional truss (Truss3D), 2-dimensional beam (Beam2D), 3-dimensional beam (Beam3D), triangular shell element (Shell3Node) and quadrilateral shell element (Shell4Node). The shell elements combine two distinct elements, one for simulating the membrane behavior and the other to simulate the plate bending behavior. The non-linear analysis capability is also developed, combining the corotational formulation with the Newton-Raphson iterative method, but at this stage is only avaiable to solve problems modeled with Beam2D elements subject to large displacements and rotations, called nonlinear geometric problems. The design sensitivity analysis capability is implemented in two elements, Truss2D and Beam2D, where are included the procedures and the analytic expressions for calculating derivatives of displacements, stress and volume performances with respect to 5 different design variables types. Finally, a set of test examples were created to validate the accuracy and consistency of the result obtained from EFFECT, by comparing them with results published in the literature or obtained with the ANSYS commercial finite element code.
Resumo:
The design of anchorage blisters of internal continuity post-tensioning tendons of bridges built by the cantilever method, presents some peculiarities, not only because they are intermediate anchorages but also because these anchorages are located in blisters, so the prestressing force has to be transferred from the blister the bottom slab and web of the girder. The high density of steel reinforcement in anchorage blisters is the most common reason for problems with concrete cast in situ, resulting in zones with low concrete compacity, leading to concrete crushing failures under the anchor plates. A solution may involve improving the concrete compression and tensile strength. To meet these requirements a high-performance fibre reinforced self-compacting mix- ture (HPFRC) was used in anchorage corner blisters of post-tensioning tendons, reducing the concrete cross-section and decreasing the reinforcement needed. To assess the ultimate capacity and the adequate serviceability of the local anchorage zone after reducing the minimum concrete cross-section and the confining reinforcement, specified by the anchorage device supplier for the particular tendon, load transfer tests were performed. To investigate the behaviour of anchorage blisters regarding the transmission of stresses to the web and the bottom slab of the girder, and the feasibility of using high performance concrete only in the blister, two half scale models of the inferior corner of a box girder existing bridge were studied: a reference specimen of ordinary reinforced concrete and a HPFRC blister specimen. The design of the reinforcement was based in the tensile forces obtained on strut-and-tie models. An experimental program was carried out to assess the models used in design and to study the feasibility of using high performance concrete only in the blister, either with casting in situ, or with precast solutions. A non-linear finite element analysis of the tested specimens was also performed and the results compared.
Resumo:
This present study aimed to investigate the fatigue life of unused (new) endodontic instruments made of NiTi with control memory by Coltene™ and subjected to the multi curvature of a mandibular first molar root canal. Additionally, the instrument‟s structural behaviour was analysed through non-linear finite element analysis (FEA). The fatigue life of twelve Hyflex™ CM files was assessed while were forced to adopt a stance with multiple radius of curvature, similar to the ones usually found in a mandibular first molar root canal; nine of them were subjected to Pecking motion, a relative movement of axial type. To achieve this, it was designed an experimental setup with the aim of timing the instruments until fracture while worked inside a stainless steel mandibular first molar model with relative axial motion to simulate the pecking motion. Additionally, the model‟s root canal multi-curvature was confirmed by radiography. The non-linear finite element analysis was conducted using the computer aided design software package SolidWorks™ Simulation, in order to define the imposed displacement required by the FEA, it was necessary to model an endodontic instrument with simplified geometry using SolidWorks™ and subsequently analyse the geometry of the root canal CAD model. The experimental results shown that the instruments subjected to pecking motion displayed higher fatigue life values and higher lengths of fractured tips than those with only rotational relative movement. The finite element non-linear analyses shown, for identical conditions, maximum values for the first principal stress lower than the yield strength of the material and those were located in similar positions to the instrument‟s fracture location determined by the experimental testing results.
Resumo:
This dissertation consists of three essays on the labour market impact of firing and training costs. The modelling framework resorts to the search and matching literature. The first chapter introduces firing costs, both liner and non-linear, in a new Keynesian model, analysing business cycle effects for different wage rigidity degrees. The second chapter adds training costs in a model of a segmented labour market, accessing the interaction between these two features and the skill composition of the labour force. Finally, the third chapter analyses empirically some of the issues raised in the second chapter.