22 resultados para mass-wind coupling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação para a Ciência e a Tecnologia - PTDC/AGR-­AAM/101643/2008 NanoDC ; SFRH/BD/76070/2011 ; FP7-­PEOPLE-­IRSES-­2010-­269289-­ ELECTROACROSS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of today's biggest concerns is the increase of energetic needs, especially in the developed countries. Among various clean energies, wind energy is one of the technologies that assume greater importance on the sustainable development of humanity. Despite wind turbines had been developed and studied over the years, there are phenomena that haven't been yet fully understood. This work studies the soil-structure interaction that occurs on a wind turbine's foundation composed by a group of piles that is under dynamic loads caused by wind. This problem assumes special importance when the foundation is implemented on locations where safety criteria are very demanding, like the case of a foundation mounted on a dike. To the phenomenon of interaction between two piles and the soil between them it's given the name of pile-soil-pile interaction. It is known that such behavior is frequency dependent, and therefore, on this work evaluation of relevant frequencies for the intended analysis is held. During the development of this thesis, two methods were selected in order to assess pile-soil-pile interaction, being one of analytical nature and the other of numerical origin. The analytical solution was recently developed and its called Generalized pile-soil-pile theory, while for the numerical method the commercial nite element software PLAXIS 3D was used. A study of applicability of the numerical method is also done comparing the given solution by the nite element methods with a rigorous solution widely accepted by the majority of the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind turbines and solar panels are becoming second nature in Portugal, as its occurrence in the country becomes ubiquitous. Somehow, one could argue that renewable energy in Portugal is in the process of ‘naturalisation’ as part of a new – mechanised, but environmentally benign – landscape. Portuguese Institute for the Conservation of Nature and Biodiversity (ICNB) has shown an ambiguous stance on this issue, defending global concerns towards renewable energy, while at the same time attempting to engage locals in the preservation of extensive ‘classified areas’. In the course of this research, we tried to focus on these incongruities and to analyse how they are impacting local communities during the process of wind power installation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field lab: Consulting lab

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial electrolysis cells (MECs) are an innovative and emerging technique based on the use of solid-state electrodes to stimulate microbial metabolism for wastewater treatment and simultaneous production of value-added compounds (such as methane). This research studied the performance of a two-chamber MEC in terms of organic matter oxidation (at the anode) and methane production (at the cathode). MEC‟s anode had been previously inoculated with an activated sludge, whereas the cathode chamber inoculum was an anaerobic sludge (containing methanogenic microorganisms). During the experimentation, the bioanode was continuously fed with synthetic solutions in anaerobic basal medium, at an organic load rate (OLR) of around 1 g L-1 d-1, referred to the chemical oxygen demand (COD). At the beginning (Run I), the feeding solution contained acetate and subsequently (Run II) it was replaced with a more complex solution containing soluble organic compounds other than acetate. For both conditions, the anode potential was controlled at -0.1 V vs. standard hydrogen electrode, by means of a potentiostat. During Run I, over 80% of the influent acetate was anaerobically oxidized at the anode, and the resulting electric current was recovered as methane at the cathode (with a cathode capture efficiency, CCE, accounting around 115 %). The average energy efficiency of the system (i.e., the energy captured into methane relative to the electrical energy input) under these conditions was over 170%. However, reactor‟s performance decreased over time during this run. Throughout Run II, a substrate oxidation over 60% (on COD basis) was observed. The electric current produced (57% of coulombic efficiency) was also recovered as methane, with a CCE of 90%. For this run the MEC‟s average energy efficiency accounted for almost 170 %. During all the experimentation, a very low biomass growth was observed at the anode whereas ammonium was transferred through the cationic membrane and concentrated at the cathode. Tracer experiments and scanning electron microscopy analyses were also carried out to gain a deeper insight into the reactor performance and also to investigate the possible reasons for partial loss of performance. In conclusion, this research suggests the great potential of MEC to successfully treat low-strength wastewaters, with high energy efficiency and very low sludge production.