33 resultados para mRNA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Biologia, Especialidade de Biologia Molecular

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para a obtenção de grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Biotecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation for applying to a Master’s Degree in Molecular Genetics and Biomedicine submitted to the Sciences and Technology Faculty of New University of Lisbon

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doctorate in Biology, Specialty in Biotechnology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the Master Degree in Molecular, Genetics and Biomedicine

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT: Background: Sleep is integral to biological function and sleep disruption can result in both physiological and psychological dysfunction. The acute cognitive consequences of sleep loss has been an active field of recent investigation, evidence suggests that sleep disruption in critically ill older adults can result in acute decrements in cognitive functioning. Surgery activates the innate immune system, inducing neuroinflammatory changes that interfere with cognition. The fact that patients with sleep disorders have an increased likelihood of exhibiting postoperative delirium encourages us to investigate the contribution of perioperative SF to the neuroinflammatory and cognitive responses of surgery. Methods: The effects of 24h sleep fragmentation (SF) and surgery were explored on adult C57BL/6J male mice. SF procedure started at 7 am with the home-cages being placed on a large platform orbital shaker cycled every 120 seconds (30 sec on/90 sec off). This procedure lasted for 24h. Stabilized tibia fracture was performed either before or after the 24h SF procedure. Separate cohorts of mice were tested for systemic and hippocampal inflammation and cognition. Results: Twenty-four hours of SF induced non-hippocampal memory dysfunction and increase in systemic IL-6. SF and surgery caused hippocampal-dependent memory impairment, although memory impairment was not exacerbated by combining SF with surgery. One day after either SF or surgery there was a significant increase in IL6 mRNA and TNF-alpha mRNA. These increments were more pronounced when either pre or post operative SF was combined with surgery. Conclusions: We show that while SF and surgery can independently produce significant memory impairment, perioperative SF significantly increased hippocampal inflammation without further cognitive impairment. The dissociation between neuroinflammation and cognitive decline may relate to our use of a sole memory paradigm that does not capture other aspects of cognition, especially learning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolise several related secondary metabolites requires regulation at the genetic level. Here, by site- directed mutagenesis, we show that AraL production is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of HAD subfamily IIA and IIB are characterised by a broad-range and overlapping specificity that anticipated the need for regulation at the genetic level. In this study we provide evidence for the existence of a genetic regulatory mechanism controlling AraL production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part of the results discussed in this thesis was presented in the following meetings: Cunha MI, Cunha C, Vaz AR, Brites D. Studying microglial-motoneuron cross-talk in ALS pathology. 6th iMed.UL Postgraduate Students Meeting, Lisbon, July 2, 2014. [Abstract and Poster] Vaz AR. Motoneuron degeneration and glial reactivity in ALS: insights from cellular to animal models. Neuroscience Seminars at IMM 2012, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal, June 9, 2014. [Oral Communication (by invitation)]