41 resultados para image feature extraction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper incorporates egocentric comparisons into a human capital accumulation model and studies the evolution of positive self image over time. The paper shows that the process of human capital accumulation together with egocentric comparisons imply that positive self image of a cohort is first increasing and then decreasing over time. Additionally, the paper finds that positive self image: (1) peaks earlier in activities where skill depreciation is higher, (2) is smaller in activities where the distribution of income is more dispersed, (3) is not a stable characteristic of an individual, and (4) is higher for more patient individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the implications of individuals’ mistaken beliefs of their abilities on incentives in organizations using the principal-agent model of moral hazard. The paper shows that if effort is observable, then an agent’s mistaken beliefs about own ability are always favorable to the principal. However, if effort is unobservable, then an agent’s mistaken beliefs about own ability can be either favorable or unfavorable to the principal. The paper provides conditions under which an agent’s over estimation about own ability is favorable to the principal when effort is unobservable. Finally, the paper shows that workers’ mistaken beliefs about their coworkers’ abilities make interdependent incentive schemes more attractive to firms than individualistic incentive schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the implications of worker overestimation of productivity for firms in which incentives take the form of tournaments. Each worker overestimates his productivity but is aware of the bias in his opponent’s self-assessment. The manager of the firm, on the other hand, correctly assesses workers’ productivities and self-beliefs when setting tournament prizes. The paper shows that, under a variety of circumstances, firms make higher profits when workers have positive self-image than if workers do not. By contrast, workers’ welfare declines due to their own misguided choices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis a semi-automated cell analysis system is described through image processing. To achieve this, an image processing algorithm was studied in order to segment cells in a semi-automatic way. The main goal of this analysis is to increase the performance of cell image segmentation process, without affecting the results in a significant way. Even though, a totally manual system has the ability of producing the best results, it has the disadvantage of taking too long and being repetitive, when a large number of images need to be processed. An active contour algorithm was tested in a sequence of images taken by a microscope. This algorithm, more commonly known as snakes, allowed the user to define an initial region in which the cell was incorporated. Then, the algorithm would run several times, making the initial region contours to converge to the cell boundaries. With the final contour, it was possible to extract region properties and produce statistical data. This data allowed to say that this algorithm produces similar results to a purely manual system but at a faster rate. On the other hand, it is slower than a purely automatic way but it allows the user to adjust the contour, making it more versatile and tolerant to image variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, several sensors and mechanisms are available to estimate a mobile robot trajectory and location with respect to its surroundings. Usually absolute positioning mechanisms are the most accurate, but they also are the most expensive ones, and require pre installed equipment in the environment. Therefore, a system capable of measuring its motion and location within the environment (relative positioning) has been a research goal since the beginning of autonomous vehicles. With the increasing of the computational performance, computer vision has become faster and, therefore, became possible to incorporate it in a mobile robot. In visual odometry feature based approaches, the model estimation requires absence of feature association outliers for an accurate motion. Outliers rejection is a delicate process considering there is always a trade-off between speed and reliability of the system. This dissertation proposes an indoor 2D position system using Visual Odometry. The mobile robot has a camera pointed to the ceiling, for image analysis. As requirements, the ceiling and the oor (where the robot moves) must be planes. In the literature, RANSAC is a widely used method for outlier rejection. However, it might be slow in critical circumstances. Therefore, it is proposed a new algorithm that accelerates RANSAC, maintaining its reliability. The algorithm, called FMBF, consists on comparing image texture patterns between pictures, preserving the most similar ones. There are several types of comparisons, with different computational cost and reliability. FMBF manages those comparisons in order to optimize the trade-off between speed and reliability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the most common cancer among women, being a major public health problem. Worldwide, X-ray mammography is the current gold-standard for medical imaging of breast cancer. However, it has associated some well-known limitations. The false-negative rates, up to 66% in symptomatic women, and the false-positive rates, up to 60%, are a continued source of concern and debate. These drawbacks prompt the development of other imaging techniques for breast cancer detection, in which Digital Breast Tomosynthesis (DBT) is included. DBT is a 3D radiographic technique that reduces the obscuring effect of tissue overlap and appears to address both issues of false-negative and false-positive rates. The 3D images in DBT are only achieved through image reconstruction methods. These methods play an important role in a clinical setting since there is a need to implement a reconstruction process that is both accurate and fast. This dissertation deals with the optimization of iterative algorithms, with parallel computing through an implementation on Graphics Processing Units (GPUs) to make the 3D reconstruction faster using Compute Unified Device Architecture (CUDA). Iterative algorithms have shown to produce the highest quality DBT images, but since they are computationally intensive, their clinical use is currently rejected. These algorithms have the potential to reduce patient dose in DBT scans. A method of integrating CUDA in Interactive Data Language (IDL) is proposed in order to accelerate the DBT image reconstructions. This method has never been attempted before for DBT. In this work the system matrix calculation, the most computationally expensive part of iterative algorithms, is accelerated. A speedup of 1.6 is achieved proving the fact that GPUs can accelerate the IDL implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenolic acids are aromatic secondary plant metabolites, widely spread throughout the plant kingdom. Due to their biological and pharmacological properties, they have been playing an important role in phytotherapy and consequently techniques for their separation and purification are in need. This thesis aims at exploring new sustainable separation processes based on ionic liquids (ILs) in the extraction of biologically active phenolic acids. For that purpose, three phenolic acids with similar chemical structures were selected: cinnamic acid, p-coumaric acid and caffeic acid. In the last years, it has been shown that ionic liquids-based aqueous biphasic systems (ABSs) are valid alternatives for the extraction, recovery and purification of biomolecules when compared to conventional ABS or extractions carried out with organic solvents. In particular, cholinium-based ILs represent a clear step towards a greener chemistry, while providing means for the implementation of efficient techniques for the separation and purification of biomolecules. In this work, ABSs were implemented using cholinium carboxylate ILs using either high charge density inorganic salt (K3PO4) or polyethylene glycol (PEG) to promote the phase separation of aqueous solutions containing three different phenolic acids. These systems allow for the evaluation of effect of chemical structure of the anion on the extraction efficiency. Only one imidazolium-based IL was used in order to establish the effect of the cation chemical structure. The selective extraction of one single acid was also researched. Overall, it was observed that phenolic acids display very complex behaviours in aqueous solutions, from dimerization to polymerization and also hetero-association are quite frequent phenomena, depending on the pH conditions. These phenomena greatly hinder the correct quantification of these acids in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human-Computer Interaction have been one of the main focus of the technological community, specially the Natural User Interfaces (NUI) field of research as, since the launch of the Kinect Sensor, the goal to achieve fully natural interfaces just got a lot closer to reality. Taking advantage of this conditions the following research work proposes to compute the hand skeleton in order to recognize Sign Language Shapes. The proposed solution uses the Kinect Sensor to achieve a good segmentation and image analysis algorithms to extend the skeleton from the extraction of high-level features. In order to recognize complex hand shapes the current research work proposes the redefinition of the hand contour making it immutable to translation, rotation and scaling operations, and a set of tools to achieve a good recognition. The validation of the proposed solution extended the Kinects Software Development Kit to allow the developer to access the new set of inferred points and created a template-matching based platform that uses the contour to define the hand shape, this prototype was tested in a set of predefined conditions and showed to have a good success ration and has proven to be eligible for real-time scenarios.