34 resultados para WATER-REPELLENT SURFACES
Resumo:
Dissertação para a obtenção do grau de doutor em Biologia pelo Instituto de Tecnologia Química e Biológica. Universidade Nova de Lisboa
Resumo:
The use of leaves for drinking water is a widespread tool-use behavior among chimpanzees. Although this tool-use behavior is widely described as the use of leaf sponges, it can actually be found in three different forms: leaf sponges, leaf-folding, and leaf spoons. Among the chimpanzee community of Bossou, we can observe all three forms, albeit in different frequencies. Here I describe the longitudinal record of manufacture and use of leaf tools for drinking water, highlighting the learning process underlying the acquisition of the skill. The degree of laterality evident in both immature and mature performers is also presented here. The use of leaves for drinking water emerges at the age of 1.5 years old, but the manufacture of leaf tools only starts at 3.5 years of age. Infants and juveniles were observed to use drinking tools that had been discarded by other individuals after use. Concerning handedness in general, the chimpanzees are ambidextrous, with some individuals biased to one side.
Resumo:
Dissertação para obtenção do grau de Mestre em Biotecnologia
Resumo:
Dissertation to obtain a Master Degree in Molecular Genetics and Biomedicine
Resumo:
Minimum parking requirements are the norm for urban and suburban development in the United States (Davidson and Dolnick (2002)). The justification for parking space requirements is that overflow parking will occupy nearby street or off-street parking. Shoup (1999) and Willson (1995) provides cases where there is reason to believe that parking space requirements have forced parcel developers to place more parking than they would in the absence of parking requirements. If the effect of parking minimums is to significantly increase the land area devoted to parking, then the increase in impervious surfaces would likely cause water quality degradation, increased flooding, and decreased groundwater recharge. However, to our knowledge the existing literature does not test the effect of parking minimums on the amount of lot space devoted to parking beyond a few case studies. This paper tests the hypothesis that parking space requirements cause an oversupply of parking by examining the implicit marginal value of land allocated to parking spaces. This is an indirect test of the effects of parking requirements that is similar to Glaeser and Gyourko (2003). A simple theoretical model shows that the marginal value of additional parking to the sale price should be equal to the cost of land plus the cost of parking construction. We estimate the marginal values of parking and lot area with spatial methods using a large data set from the Los Angeles area non-residential property sales and find that for most of the property types the marginal value of parking is significantly below that of the parcel area. This evidence supports the contention that minimum parking requirements significantly increase the amount of parcel area devoted to parking.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics
Resumo:
Dissertation presented to obtain the Ph.D degree in Engineering and Technology Sciences, Chemical Engineering.
Resumo:
Fundação para a Ciência e a Tecnologia (FCT)- PhD grant SFRH/BD/37151/2007; projects PTDC/MAT/099275/2008; PTDC/MAT/119689/2010; PTDC/MAT/120411/2010; PTDC/MAT-GEO/0675/2012
Resumo:
The Keystone XL has a big role for transforming Canadian oil to the USA. The function of the pipeline is decreasing the dependency of the American oil industry on other countries and it will help to limit external debt. The proposed pipeline seeks the most suitable route which cannot damage agricultural and natural water recourses such as the Ogallala Aquifer. Using the Geographic Information System (GIS) techniques, the suggested path in this study got extremely high correct results that will help in the future to use the least cost analysis for similar studies. The route analysis contains different weighted overlay surfaces, each, was influenced by various criteria (slope, geology, population and land use). The resulted least cost path routes for each weighted overlay surface were compared with the original proposed pipeline and each displayed surface was more effective than the proposed Keystone XL pipeline.
Resumo:
The main results presented in this PhD Dissertation have been published in interna-tional journals included in the Science Citation Index (SCI)
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
In the context of this dissertation several studies were developed resulting in submission and publication “Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones” to Journal of Cultural Heritage. (http://dx.doi.org/10.101 /j.culher.2014.10.004)
Resumo:
This paper proposes to quantify the effect of social tariffs (ST) in the Portuguese water and waste sector (WWS). It calculates the amount of subsidy implicit in ST schemes, characterising the existing tariffs in 2011 and producing a synthetic tariff scene where the regulator’s recommendation is respected. This is the first time such an exercise is undertaken and it is very relevant in a context of deep economic crisis. Results suggest that there are fewer beneficiaries than what income eligibility criteria would imply and that putting the regulator’s recommendation in practice would considerably raise subsidy amounts, potentially leading to a severe increase in non-subsidised user tariffs to allow for break-even.
Resumo:
Self-assembly is a phenomenon that occurs frequently throughout the universe. In this work, two self-assembling systems were studied: the formation of reverse micelles in isooctane and in supercritical CO2 (scCO2), and the formation of gels in organic solvents. The goal was the physicochemical study of these systems and the development of an NMR methodology to study them. In this work, AOT was used as a model molecule both to comprehensively study a widely researched system water/AOT/isooctane at different water concentrations and to assess its aggregation in supercritical carbon dioxide at different pressures. In order to do so an NMR methodology was devised, in which it was possible to accurately determine hydrodynamic radius of the micelle (in agreement with DLS measurements) using diffusion ordered spectroscopy (DOSY), the micellar stability and its dynamics. This was mostly assessed by 1H NMR relaxation studies, which allowed to determine correlation times and size of correlating water molecules, which are in agreement with the size of the shell that interacts with the micellar layer. The encapsulation of differently-sized carbohydrates was also studied and allowed to understand the dynamics and stability of the aggregates in such conditions. A W/CO2 microemulsion was prepared using AOT and water in scCO2, with ethanol as cosurfactant. The behaviour of the components of the system at different pressures was assessed and it is likely that above 130 bar reverse microemulsions were achieved. The homogeneity of the system was also determined by NMR. The formation of the gel network by two small molecular organogelators in toluene-d8 was studied by DOSY. A methodology using One-shot DOSY to perform the spectra was designed and applied with success. This yielded an understanding about the role of the solvent and gelator in the aggregation process, as an estimation of the time of gelation.