109 resultados para Redes neuronais (Neurobiologia)
Resumo:
Dissertação apresentada como requisito parcial para a obtenção do grau de mestre em Estatística e Gestão de Informação.
Resumo:
Dissertação para obtenção do Grau de Mestre em Mestrado Integrado em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A informação e a sua gestão é considerada nos nossos dias como o principal factor de sucesso ou insucesso para qualquer actividade económica ou social. O desenvolvimento de novas tecnologias força todos os agentes econcómicos a desenvolverem-se nestas áreas para conseguirem vantagens concorrenciais. Este trabalho visa fazer uma apresentação de uma “nova” área da ciência da computação a que se chamou Inteligência Artificial.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Estruturas
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
O principal objectivo deste trabalho assenta em desenvolver modelos de previsão de preços de commodities para assim comparar a capacidade preditiva da simulação de Monte Carlo com a das redes neuronais. A simulação de Monte Carlo é principalmente utilizada para avaliar as opções, já as redes neuronais são utilizadas para fazer previsões, classificações, clustering ou aproximação de funções. Os diversos modelos desenvolvidos foram aplicados na previsão do preço futuro do milho, petróleo, ouro e cobre. Sendo que os horizontes temporais testados neste trabalho foram 1 dia, 5 dias, 20 dias e 60 dias. Através da análise do erro absoluto médio percentual (MAPE) concluiu-se que no geral o modelo individual que apresentou um melhor desempenho preditivo foram as redes neuronais. Contudo, nas previsões a 1 e a 5 dias os resultados obtidos foram semelhantes para ambos os modelos. Para se tentar melhorar os resultados obtidos pelos modelos individuais foram aplicadas algumas técnicas de combinação de modelos. A combinação de modelos demonstrou no geral capacidade para melhorar os resultados dos modelos individuais, porém apenas para o horizonte a 60 dias é que os resultados melhoraram significativamente.
Resumo:
Nos últimos tempos, a preocupação ambiental, passou a ser um tema recorrente na sociedade. A consciência coletiva da limitação do planeta em recursos naturais tem mostrado a necessidade de alterar os comportamentos no sentido de reduzir desperdícios, e conseguir objetivos do dia-a-dia de forma mais eficiente e menos penalizadora do já frágil equilíbrio ecológico. Os consumos energéticos, e especificamente os consumos em edifícios, contribuem de forma significativa para o desequilíbrio ambiental pelo que, cada vez mais, se assiste a um aumento da preocupação com a eficiência energética em edifícios e a consciência dos benefícios que daí podem resultar. A eficiência energética está intimamente relacionada com o não desperdício de energia. Para que não haja desperdício de energia é necessário saber onde essa energia é consumida bem como os fatores que influenciam o consumo. Há já algum tempo que se fazem estudos cujo principal objetivo é prever o consumo de energia num edifício, através da análise de um conjunto de variáveis, normalmente meteorológicas. Mais recentemente começam a surgir novos estudos nesta área, que consideram outro tipo de variáveis, nomeadamente variáveis relacionadas com o comportamento humano, que devidamente tratadas podem modelizar esse mesmo comportamento. Conseguir prever o consumo de um edifício de uma forma mais rigorosa tendo em consideração, não só fatores construtivos ou meteorológicos, mas também fatores resultantes de comportamentos das pessoas, será uma ferramenta preciosa em termos de projeto ou de exploração dos edifícios. Até que ponto a variável humana é importante na previsão de consumos energéticos? É a esta pergunta que a presente dissertação tenta responder. Para tal apresenta um método de estudo, que utiliza redes neuronais, dividido em etapas. Primeiramente é necessário conhecer as variáveis existentes num edifício de estudo, selecionar quais as que são pertinentes na previsão dos consumos e porquê. Em seguida é preciso prever a energia consumida através da análise das variáveis.
Resumo:
Um dos maiores desafios da neurofisiologia é o de compreender a forma como a informação é transmitida através do sistema nervoso. O estudo do sistema nervoso tem várias aplicações, tanto na neurologia, permitindo avanços ao nível clínico, como noutras áreas, e.g., nos sistemas de processamento de informação baseados em redes neuronais. A transmissão de informação entre neurónios é feita por via de sinais elétricos. A compreensão deste fenómeno é ainda incompleta e há projectos a nível europeu e mundial com o objetivo de modular o sistema nervoso no seu todo de forma a melhor o compreender. Uma das teses que se desenvolve hoje em dia é a de que a transmissão de sinais elétricos no sistema nervoso é influenciada por fenómenos de sincronia. O objetivo desta dissertação é o de otimizar um protocolo de aquisição e análise de dados reais de eletroencefalograma e eletromiograma com o propósito de observar fenómenos de sincronia, baseando-se num algoritmo (análise por referência de fase, ou RPA, do inglês reference phase analysis) que deteta sincronias de fase entre os sinais de eletroencefalograma (EEG) e um sinal de referência, que é, no caso presente, o eletromiograma (EMG). A otimização deste protocolo e sua validação indicaram a existência de fenómenos significativos de sincronia no sinal elétrico, transmitido entre os músculos da mão e o córtex motor, no decorrer da ação motora.
Resumo:
Com o passar do tempo, a aposta em energias renováveis tem vindo a aumentar. De forma a prever o que se irá produzir com os sistemas de energias renováveis, é necessário desenvolver modelos preditivos, específicos para cada situação. No Departamento de Engenharia Electrotécnica (DEE) da Faculdade de Ciências e Tecnologia (FCT) encontra-se um sistema fotovoltaico e um sistema eólico em funcionamento, e assim de forma a ter uma estimativa da produção de energia de ambos os sistemas, propôs-se nesta dissertação desenvolver um modelo de previsão de produção de energia eléctrica para os sistemas fotovoltaico e eólico. Para desenvolver o modelo preditivo pretendido, em primeiro lugar recolheram-se os dados meteorológicos e de produção de energia no ano 2013 e realizou-se um processamento desses mesmos dados, com a linguagem de programação Java, uma vez que não se encontravam na melhor forma para serem analisados e utilizados para construção do modelo. Após realizado o processamento, como os dados do ano de 2014 existentes não eram suficientes para testar o modelo depois de ser desenvolvido, geraram-se dados meteorológicos para 2014 tendo em consideração os dados de 2013. Para os dados de energia produzida, criaram-se superfícies de aproximação a partir dos dados de 2013, e utilizando os dados meteorológicos gerados para 2014 obteve-se uma aproximação da energia produzida. Tendo todos os dados necessários para a construção do modelo e posteriormente para o testar, iniciouse o pré-processamento dos dados com recurso a filtros e à Análise em Componentes Principais. Por fim, construíram-se duas estruturas diferentes de Redes Neuronais Artificiais de modo a verificar qual se adequa melhor aos sistemas existentes. Para validar o modelo construído com base em redes neuronais testou-se o modelo com os dados de 2014, diferentes dos utilizados na sua construção. Com os resultados obtidos concluiu-se que o filtro mais adequado para o pré-processamento é o filtro Savitzky-Golay e a estrutura do modelo mais indicada para o pretendido será a Rede Neuronal Artificial (RNA) com apenas uma camada intermédia.